Биохимия ферментов. Строение, свойства и функции. Ферменты: биохимическое строение и физиологическая роль Биологическая роль ферментов биохимия


Биохимия
Ферменты
Ферменты
По своей функции ферменты являются биологическими катализаторами. Сущность действия ферментов , так же как неорганических катализаторов, заключается:

  • в активации молекул реагирующих веществ,
  • в разбиении реакции на несколько стадий, энергетический барьер каждой из которых ниже такового общей реакции.
Однако энергетически невозможные реакции ферменты катализировать не будут, они ускоряют только те реакции, которые могут идти в данных условиях.


Ферменты Сходство ферментов и неорганических катализаторов заключается в следующем:
  • Катализируют только энергетически возможные реакции.
  • Не изменяют направления реакции.
  • Ускоряют наступление равновесия реакции, но не сдвигают его.
  • Не расходуются в процессе реакции.


Ферменты
Отличия ферментов от неорганических катализаторов позволяют им «работать» внутри живых тел и делают их изучение очень важным направлением в химии:
  • Скорость ферментативной реакции намного выше.
  • Высокая специфичность.
  • Мягкие условия работы (внутриклеточные).
  • Возможность регулирования скорости реакции.
  • Скорость ферментативной реакции пропорциональна количеству фермента.


Стадии ферментативного катализа
В ферментативной реакции можно выделить следующие этапы:
  • Присоединение субстрата (S) к ферменту (E) с образованием фермент-субстратного комплекса (E-S).
  • Преобразование фермент-субстратного комплекса в один или несколько переходных комплексов (E-X) за одну или несколько стадий.
  • Превращение переходного комплекса в комплекс фермент-продукт (E-P).
  • Отделение конечных продуктов от фермента.


Механизмы катализа
1. Кислотно-основной катализ – в активном центре фермента находятся группы специфичных аминокислотных остатков , которые являются хорошими донорами или акцепторами протонов. Такие группы представляют собой мощные катализаторы многих органических реакций. 2. Ковалентный катализ – ферменты реагируют со своими субстратами, образуя при помощи ковалентных связей очень нестабильные фермент-субстратные комплексы, из которых в ходе внутримолекулярных перестроек образуются продукты реакции.


Типы ферментативных реакций В зависимости от последовательности взаимодействия между ферментом и реактивами выделяют следующие типы ферментативных реакций:
  • Случайная реакция
  • Последовательная реакция
  • Тип «пинг-понг»


Схема случайных реакций
В случайных реакциях последовательность взаимодействия между субстратом и реагентами не имеет значения:


Схема последовательных реакций
В этом случае к ферменту последовательно присоединяются субстраты А и В, образуя "тройной комплекс", после чего осуществляется катализ. Продукты реакции также последовательно отщепляются от фермента.


Схема «пинг-понг» В этом случае фермент сначала взаимодействует с субстратом А, отбирая у него какие либо химические группы и превращая в соответствующий продукт. Затем к ферменту присоединяется субстрат В, получающий эти химические группы.


Строение ферментов Все ферменты являются белками, поэтому, они, как и остальные белки по составу делятся на простые и сложные.
  • Простые ферменты состоят только из аминокислот.
  • Сложные ферменты имеют в своем составе белковую часть, состоящую из аминокислот – апофермент, и небелковую часть - кофактор. Кофактор, в свою очередь, может называться коферментом или простетической группой.
Для осуществления катализа необходим полноценный комплекс апобелка и кофактора, по отдельности катализ они осуществить не могут. Как многие белки, ферменты могут быть мономерами полимерами.


Строение ферментов В составе фермента выделяют две области – активный центр и аллостерический центр. Активный центр – комбинация аминокислотных остатков (обычно 12-16), обеспечивающая непосредственное связывание с молекулой субстрата и осуществляющая катализ. В активном центре выделяют два участка:
  • якорный (контактный, связывающий) – отвечает за связывание и ориентацию субстрата в активном центре,
  • каталитический – непосредственно отвечает за осуществление реакции.


Схема активного центра

Глава IV .3.

Ферменты

Обменвеществ в организме можно определить как совокупность всех химических превращений, которым подвергаются соединения, поступающие извне. Эти превращения включают все известные виды химических реакций: межмолекулярный перенос функциональных групп, гидролитическое и негидролитическое расщепления химических связей, внутримолекулярная перестройка, новообразование химических связей и окислительно - восстановительные реакции. Такие реакции протекают в организме с чрезвычайно большой скоростью только в присутствии катализаторов. Все биологические катализаторы представляют собой вещества белковой природы и носят названия ферменты (далее Ф) или энзимы (Е).

Ферменты не являются компонентами реакций, а лишь ускоряют достижение равновесия увеличивая скорость как прямого, так и обратного превращения. Ускорение реакции происходит за счет снижении энергии активации – того энергетического барьера, который отделяет одно состояние системы (исходное химическое соединение) от другого (продукт реакции).

Ферменты ускоряют самые различные реакции в организме. Так достаточно простая с точки зрения традиционной химии реакция отщепления воды от угольной кислоты с образованием СО 2 требует участия фермента, т.к. без него она протекает слишком медленно для регулирования рН крови. Благодаря каталитическому действию ферментов в организме становится возможным протекание таких реакций, которые без катализатора шли бы в сотни и тысячи раз медленнее.

Свойства ферментов

1. Влияние на скорость химической реакции: ферменты увеличивают скорость химической реакции, но сами при этом не расходуются.

Скорость реакции – это изменение концентрации компонентов реакции в единицу времени. Если она идет в прямом направлении, то пропорциональна концентрации реагирующих веществ, если в обратном – то пропорциональна концентрации продуктов реакции. Отношение скоростей прямой и обратной реакций называется константой равновесия. Ферменты не могут изменять величины константы равновесия, но состояние равновесия в присутствии ферментов наступает быстрее.

2. Специфичность действия ферментов. В клетках организма протекает 2-3 тыс. реакций, каждая из которые катализирутся определенным ферментом. Специфичность действия фермента – это способность ускорять протекание одной определенной реакции, не влияя на скорость остальных, даже очень похожих.

Различают:

Абсолютную – когда Ф катализирует только одну определенную реакцию (аргиназа – расщепление аргинина)

Относительную (групповую спец) – Ф катализирует определенный класс реакций (напр. гидролитическое расщепление) или реакции при участии определенного класса веществ.

Специфичность ферментов обусловлена их уникальной аминокислотной последовательностью, от которойзависит конформация активного центра, взаимодействующего с компонентами реакции.

Вещество, химическое превращение которого катализируется ферментом носит название субстрат ( S ) .

3. Активность ферментов – способность в разной степени ускорять скорость реакции. Активность выражают в:

1) Международных единицах активности – (МЕ) количество фермента, катализирующего превращение 1 мкМ субстрата за 1 мин.

2)Каталах (кат) – количество катализатора (фермента), способное превращать 1 моль субстрата за 1 с.

3) Удельной активности – число единиц активности (любых из вышеперечисленных) в исследуемом образце к общей массе белка в этом образце.

4) Реже используют молярную активность – количество молекул субстрата превращенных одной молекулой фермента за минуту.

Активность зависит в первую очередь от температуры . Наибольшую активность тот или иной фермент проявляет при оптимальной температуре. Для Ф живого организма это значение находится в пределах +37,0 - +39,0 ° С, в зависимости от вида животного. При понижении температуры, замедляется броуновское движение, уменьшается скорость диффузии и, следовательно, замедляется процесс образования комплекса между ферментом и компонентами реакции (субстратами). В случае повышения температуры выше +40 - +50 ° С молекула фермента, которая является белком, подвергается процессу денатурации. При этом скорость химической реакции заметно падает (рис. 4.3.1.).

Активность ферментовзависит также от рН среды . Для большинства из них существует определенное оптимальное значение рН, при котором их активность максимальна. Поскольку в клетке содержатся сотни ферментов и для каждого из них существуют свои пределы опт рН, то изменение рН это один из важных факторов регуляции ферментативной активности. Так, в результате одной химреакции при участии определенного фермента рН опт которого лежит в перделах 7.0 – 7.2 образуется продукт, который является кислотой. При этом значение рН смещается в область 5,5 – 6.0. Активность фермента резко снижается, скорость образования продуктазамедляется, но при этом активизируется другой фермент, для которого эти значения рН оптимальны и продукт первой реакции подвергается дальнейшему химическому превращению. (Еще пример про пепсин и трипсин).

Химическая природа ферментов. Строение фермента. Активный и аллостерический центры

Все ферменты это белки с молекулярной массой от 15 000 до нескольких млн Да. По химическому строению различают простые ферменты (состоят только из АК) и сложные ферменты (имеют небелковую часть или простетическую группу). Белковая часть носит название – апофермент, а небелковая, если она связана ковалентно с апоферментом, то называется кофермент, а если связь нековалентная (ионная, водородная) – кофактор . Функции простетической группы следующие: участие в акте катализа, осуществление контакта между ферментом и субстратом, стабилизация молекулы фермента в пространстве.

В роли кофактора обычно выступают неорганические вещества- ионы цинка, меди, калия, магния, кальция, железа, молибдена.

Коферменты можно рассматривать как составную часть молекулы фермента. Это органические вещества, среди которых различают: нуклеотиды (АТФ , УМФ , и пр), витамины или их производные (ТДФ – из тиамина (В 1 ), ФМН – из рибофлавина (В 2 ), коэнзим А – из пантотеновой кислоты (В 3 ), НАД и пр) и тетрапиррольные коферменты – гемы.

В процессе катализа реакции в контакт с субстратом вступает не вся молекула фермента, а определенный ее участок, который называется активным центром . Эта зона молекулы не состоит из последовательности аминокислот, а формируется при скручивании белковой молекулы в третичную структуру. Отдельные участки аминокислот сближаются между собой, образуя определенную конфигурацию активного центра. Важная особенность строения активного центра - его поверхность комплементарна поверхности субстрата, т.е. остатки АК этой зоны фермента способны вступать в химическое взаимодействие с определенными группами субстрата. Можно представить, что активный центр фермента совпадает со структурой субстрата как ключ и замок.

В активном центре различают две зоны: центр связывания , ответственный за присоединение субстрата, и каталитический центр , отвечающий за химическое превращение субстрата. В состав каталитического центра большинства ферментов входят такие АК, как Сер, Цис, Гис, Тир, Лиз. Сложные ферменты в каталитическом центре имеют кофактор или кофермент.

Помимо активного центра ряд ферментов снабжен регуляторным (аллостерическим) центром. С этой зоной фермента взаимодействуют вещества, влияющие на его каталитическую активность.

Механизм действия ферментов

Акт катализа складывается из трех последовательных этапов.

1. Образование фермент-субстратного комплекса при взаимодействии через активный центр.

2. Связывание субстрата происходит в нескольких точках активного центра, что приводит к изменению структуры субстрата, его деформации за счет изменения энергии связей в молекуле. Это вторая стадия и называется она активацией субстрата. При этом происходит определенная химическая модификация субстрата и превращение его в новый продукт или продукты.

3. В результате такого превращения новое вещество (продукт) утрачивает способность удерживаться в активном центре фермента и фермент-субстратный, вернее уже фермент-продуктный комплекс диссоциирует (распадается).

Виды каталитических реакций:

А+Е = АЕ = БЕ = Е + Б

А+Б +Е = АЕ+Б = АБЕ = АБ + Е

АБ+Е = АБЕ = А+Б+Е,где Е - энзим, А и Б - субстраты, либо продукты реакции.

Ферментативные эффекторы - вещества, изменяющие скорость ферментативного катализа и регулирующие за счет этого метаболизм. Среди них различают ингибиторы - замедляющие скорость реакции и активаторы - ускоряющие ферментативную реакцию.

В зависимости от механизма торможения реакции различают конкурентные и неконкурентные ингибиторы. Строение молекулы конкурентного ингибитора сходно со структурой субстрата и совпадает с поверхностью активного центра как ключ с замком (или почти совпадает). Степень этого сходства может даже быть выше чем с субстратом.

Если А+Е = АЕ = БЕ = Е + Б, тоИ+Е = ИЕ ¹

Концентрация способного к катализу фермента при этом снижается и скорость образование продуктов реакции резко падает (рис. 4.3.2.).


В качестве конкурентных ингибиторов выступает большое число химических веществ эндогенного и экзогенного происхождения (т.е. образующихся в организме и поступающих извне – ксенобиотики, соответственно). Эндогенные вещества являются регуляторами метаболизма и называются антиметаболитами. Многие из них используют при лечении онкологических и микробных заболеваний, тк. они ингибируют ключевые метаболичекие реакции микроорганизмов (сульфаниламиды) и опухолевых клеток. Но при избытке субстрата и малой концентрации конкурентного ингибитора его действие отменяется.

Второй вид ингибиторов - неконкурентные. Они взаимодействую с ферментом вне активного центра и избыток субстрата не влияет на их ингибирующую способность, как в случае с конкурентными ингибиторами. Эти ингибиторы взаимодействуют или с определенными группами фермента (тяжелые металлы связываются с тиоловыми группами Цис) или чаще всего регуляторным центром, что снижает связывающую способность активного центра. Собственно процесс ингибирования - это полное или частичное подавление активности фермента при сохранении его первичной и пространственной структуры.

Различают также обратимое и необратимое ингибирование. Необратимые ингибиторы инактивируют фермент, образуя с его АК или другими компонентами структуры химическую связь. Обычно это ковалентная связь с одним из участков активного центра. Такой комплекс практически недиссоциирует в физиологических условиях. В другом случае ингибитор нарушает конформационную структуру молекулы фермента - вызывает его денатурацию.

Действие обратимых ингибиторов может быть снято при переизбытке субстрата или под действием веществ, изменяющих химическую структуру ингибитора. Конкурентные и неконкурентные ингибиторы относятся в большинстве случаев к обратимым.

Помимо ингибиторов известны еще активаторы ферментативного катализа. Они:

1) защищают молекулу фермента от инактивирующих воздействий,

2) образуют с субстратом комплекс, который более активно связывается с активным центром Ф,

3) взаимодействуя с ферментом, имеющим четвертичную структуру, разъединяют его субъединицы и тем самым открывают доступ субстрату к активному центру.

Распределение ферментов в организме

Ферменты, участвующие в синтезе белков, нуклеиновых кислот и ферменты энергетического обмена присутствуют во всех клетках организма. Но клетки, которые выполняют специальные функции содержат и специальные ферменты. Так клетки островков Лангерганса в поджелудочной железе содержат ферменты, катализирующие синтез гормонов инсулина и глюкагона. Ферменты, свойственные только клеткам определенных органов называют органоспецифическими: аргиназа и урокиназа - печень, кислая фосфатаза - простата. По изменению концентрации таких ферментов в крови судят о наличии патологий в данных органах.

В клетке отдельные ферменты распределены по всей цитоплазме, другие встроены в мембраны митохондрий и эндоплазматического ретикулума, такие ферменты образуют компартменты, в которых происходят определенные, тесно связанные между собой этапы метаболизма.

Многие ферменты образуются в клетках и секретируются в анатомические полости в неактивном состоянии - это проферменты. Часто в виде проферментов образуются протеолитические ферменты (расщепляющие белки). Затем под воздействием рН или других ферментов и субстратов происходит их химическая модификация и активный центр становится доступным для субстратов.

Существуют также изоферменты - ферменты, отличающиеся по молекулярной структуре, но выполняющие одинаковую функцию.

Номенклатура и классификация ферментов

Название фермента формируется из следующих частей:

1. название субстрата с которым он взаимодействует

2. характер катализируемой реакции

3. наименование класса ферментов (но это необязательно)

4. суффикс -аза-

пируват - декарбоксил - аза,сукцинат - дегидроген - аза

Посколькууже известно порядка 3 тыс. ферментов их необходимо классифицировать. В настоящее время принята международная классификация ферментов, в основу которой положен тип катализируемой реакции. Выделяют 6 классов, которые в свою очередь делятся на ряд подклассов (в данной книге представлены только выборочно):

1. Оксидоредуктазы. Катализируют окислительно-восстановительные реакции. Делятся на 17 подклассов. Все ферменты содержат небелковую часть в виде гема или производных витаминов В 2 , В 5 . Субстрат, подвергающийся окислению выступает как донор водорода.

1.1. Дегидрогеназы отщепляют от одного субстрата водород и переносят на другие субстраты. Коферменты НАД, НАДФ, ФАД, ФМН. Они акцептируют на себе отщепленный ферментом водород превращаясь при этом в восстановленную форму (НАДН, НАДФН, ФАДН) и переносят к другому фермент-субстратному комплексу, где его и отдают.

1.2. Оксидазы - катализирует перенос водорода на кислород с образованием воды или Н 2 О 2 . Ф. Цитохромокисдаза дыхательной цепи.

RH + NAD H + O 2 = ROH + NAD + H 2 O

1.3. Монооксидазы - цитохром Р450 . По своему строению одновременно гемо- и флавопротеид. Он гидроксилирует липофильные ксенобиотики (по вышеописанному механизму).

1.4. Пероксидазы и каталазы - катализируют разложение перекисиводорода, которая образуется в ходе метаболических реакций.

1.5. Оксигеназы - катализируют реакции присоединения кислорода к субстрату.

2. Трансферазы - катализируют перенос различных радикалов от молекулы донора к молекуле акцептору.

Аа + Е + В = Еа + А + В = Е + Ва + А

2.1. Метилтрансферазы (СН 3 -).

2.2.Карбоксил- и карбамоилтрансферазы.

2.2. Ацилтрансферазы – Кофермент А (перенос ацильной группы - R -С=О).

Пример: синтез нейромедиатора ацетилхолина (см.главу "Обмен белков").

2.3. Гексозилтрансферазы- катализируют перенос гликозильных остатков.

Пример: отщепление молекулы глюкозы от гликогена под действием фосфорилазы .

2.4. Аминотрансферазы - перенос аминогрупп

R 1- CO - R 2 + R 1 - CH - NH 3 - R 2 = R 1 - CH - NH 3 - R 2 + R 1- CO - R 2

Играют важную роль в превращении АК. Общим коферментом являнтся пиридоксальфосфат.

Пример: аланинаминотрансфераза (АлАТ): пируват + глутамат = аланин + альфа-кетоглутарат (см.главу "Обмен белков").

2.5. Фосфотрансфереза (киназа) - катализируют перенос остатка фосфорной кислоты. В большинстве случает донором фосфата является АТФ. В процессе расщепления глюкозы в основном принимают участие ферменты этого класса.

Пример: Гексо (глюко)киназа .

3. Гидролазы - катализируют реакции гидролиза, т.е. расщепление веществ с присоединением по месту разрыва связи воды. К этому классу относятся преимущественно пищеварительные ферменты, они однокомпонентные (не содержат небелковой части)

R1-R2 +H 2 O = R1H + R2OH

3.1. Эстеразы - расщепляют эфирные связи. Это большой подкласс ферментов, катализирующих гидролиз тиоловых эфиров, фосфоэфиров.
Пример: NH 2 ).

Пример: аргиназа (цикл мочевины).

4.Лиазы - катализируют реакции расщепления молекул без присоединения воды. Эти ферменты имеют небелковую часть в виде тиаминпирофосфата (В 1) и пиридоксальфосфата (В 6).

4.1. Лиазы связи С-С. Их обычно называют декарбоксилазами.

Пример: пируватдекарбоксилаза .

5.Изомеразы - катализируют реакции изомеризации.

Пример: фосфопентозоизомераза, пентозофосфатизомераза (ферменты неокислительной ветви пентозофосфатного пути).

6.Лигазы катализируют реакции синтеза более сложных веществ из простых. Такие реакции идут с затратой энергии АТФ. К названию таких ферментов прибавляют "синтетаза".

ЛИТЕРАТУРА К ГЛАВЕ IV .3.

1. Бышевский А. Ш., Терсенов О. А. Биохимия для врача // Екатеринбург: Уральский рабочий, 1994, 384 с.;

2. Кнорре Д. Г., Мызина С. Д. Биологическая химия. – М.: Высш. шк. 1998, 479 с.;

3. Филиппович Ю. Б., Егорова Т. А., Севастьянова Г. А. Практикум по общей биохимии // М.: Просвящение, 1982, 311с.;

4. Ленинджер А. Биохимия. Молекулярные основы структуры и функций клетки // М.: Мир, 1974, 956 с.;

5. Пустовалова Л.М. Практикум по биохимии // Ростов-на Дону: Феникс, 1999, 540 с.

Ферменты и витамины

Роль биологических молекул, входящих в состав организма.

Лекция № 7

(2 часа)

Общая характеристика ферментов

Строение ферментов

Основные этапы ферментативного катализа

Свойства ферментов

Номенклатура и классификация ферментов

Ингибиторы и активаторы ферментов

Классификация витаминов

Жирорастворимые витамины

Витамины, растворимые в воде

Витамины группы В

Общие признаки ферментов и катализаторов неорганической природы:

Катализируют только энергетически возможные реакции,

Не изменяют направление реакции,

Не расходуются в процессе реакции,

Не участвуют в образовании продуктов реакции.

Отличия ферментов от небиологических катализаторов :

Белковое строение;

Высокая чувствительность к физико-химическим факторам среды, работают в более мягких условиях (Р атмосферное, 30-40 о С, рН близкое к нейтральному);

Высокая чувствительность к химическим реагентам ;

Высокая эффективность действия (могут ускорять реакцию в 10 8 -10 12 раз; одна молекула Ф может катализировать 1000-1000000 молекул субстрата за 1 мин);

Высокая избирательность Ф к субстратам (субстратная специфичность) и к типу катализируемой реакции (специфичность действия);

Активность Ф регулируется особыми механизмами.

По строению ферменты делятся на простые (однокомпонентные) и сложные (двукомпонентные). Простой состоит только из белковой части, сложный (холофермент ) - из белковой и небелковой частей. Белковая часть - апофермент , небелковая - кофермент (витамины В 1 , В 2 , В 5 , В 6 , Н, Q и др.). Отдельно апофермент и кофермент не обладают каталитической активностью. Участок на поверхности молекулы фермента, который взаимодействует с молекулой субстрата - активный центр.

Активный центр образован из остатков аминокислот, находящихся в составе различных участков полипептидной цепи или различных сближенных полипептидных цепей . Образуется на уровне третичной структуры белка-фермента. В его пределах различают субстратный (адсорбционный) центр и каталитический центр. Кроме активного центра встречаются особые функциональные участки - аллостерические (регуляторные) центры.

Каталитический центр - это область активного центра фермента, которая непосредственно участвует в химических преобразованиях субстрата. КЦ простых ферментов - это сочетание нескольких аминокислотных остатков, расположенных в разных местах полипептидной цепи фермента, но пространственно сближенных между собой за счет изгибов этой цепи (серин , цистеин , тирозин , гистидин , аргинин , асп. и глут. кислоты). КЦ сложного белка устроен сложнее, т.к. участвует простетическая группа фермента - кофермент (водорастворимые витамины и жирорастворимый витамин K).


Субстратный (адсорбционный) цент р - это участок активного центра фермента, на котором происходит сорбция (связывание) молекулы субстрата. СЦ формируется одним, двумя, чаще тремя радикалами аминокислот, которые обычно расположены рядом с каталитическим центром. Главная функция СЦ - связывание молекулы субстрата и ее передача каталитическому центру в наиболее удобном для него положении.

Аллостерический центр ("имеющий иную пространственную структуру") - участок молекулы фермента вне его активного центра, который обратимо связывается с каким-либо веществом. Такое связывание приводит к изменению конформации молекулы фермента и его активности. Активный центр либо начинает работать быстрее, либо медленнее. Соответственно такие вещества называют аллостерическими активаторами либо аллостерическими ингибиторами.

Аллостерические центры найдены не у всех ферментов. Они есть у ферментов, работа которых изменяется под действием гормонов, медиаторов и других биологически активных веществ.

Свойства ферментов

1. Зависимость скорости реакции от температуры

Зависимость активности ферментов (скорости реакции) от температуры описывается колоколообразной кривой с максимумом скорости при значениях оптимальной температуры для данного фермента . Повышение скорости реакции при приближении к оптимальной температуре объясняется увеличением кинетической энергии реагирующих молекул.

Зависимость скорости реакции от температуры

Закон о повышении скорости реакции в 2-4 раза при повышении температуры на 10°С справедлив и для ферментативных реакций, но только в пределах до 55-60°С, т.е. до температур денатурации белков. При понижении температуры активность ферментов понижается, но не исчезает совсем.

Как исключение, имеются ферменты некоторых микроорганизмов, существующих в воде горячих источников и гейзеров, у них оптимум температуры приближается к точке кипения воды. Примером слабой активности при низкой температуре может служить зимняя спячка некоторых животных (суслики, ежи), температура тела которых понижается до 3-5°С. Это свойство ферментов также используется в хирургической практике при проведении операций на грудной полости, когда больного подвергают охлаждению до 22°С.

Ферменты могут быть очень чувствительны к изменению температуры:

  • у сиамских кошек мордочка, кончики ушей, хвоста, лапок черного цвета. В этих областях температура всего на 0,5°С ниже, чем в центральных областях тела. Но это позволяет работать ферменту, образующему пигмент в волосяных луковицах, при малейшем повышении температуры фермент инактивируется,
  • обратный случай - при понижении температуры окружающего воздуха у зайца-беляка пигментообразующий фермент инактивируется и заяц получает белую шубку,
  • противовирусный белок интерферон начинает синтезироваться в клетках только при достижении температуры тела 38°С,

Бывают и уникальные ситуации:

  • для большинства людей повышение температуры тела на 5°С (до 42°С) несовместимо с жизнью из-за дисбаланса скорости ферментативных реакций. В то же время у некоторых спортсменов обнаружено, что при марафонском беге их температура тела составила около 40°С, максимальная зарегистрированная температура тела была 44°С.

2. Зависимость скорости реакции от рН

Зависимость также описывается колоколообразной кривой с максимумом скорости при оптимальном для данного фермента значении рН.

Данная особенность ферментов имеет существенное значение для организма в его адаптации к изменяющимся внешним и внутренним условиям. Сдвиги величины рН вне- и внутри клетки играет роль в патогенезе заболеваний, изменяя активность ферментов разных метаболических путей.

Для каждого фермента существует определенный узкий интервал рН среды, который является оптимальным для проявления его высшей активности. Например, оптимальные значения рН для пепсина 1,5-2,5, трипсина 8,0-8,5, амилазы слюны 7,2, аргиназы 9,7, кислой фосфатазы 4,5-5,0, сукцинатдегидрогеназы 9,0.

Зависимость скорости реакции от величины pH

Зависимость активности от кислотности среды объясняется наличием аминокислот в структуре фермента, заряд которых изменяется при сдвиге рН (глутамат, аспартат, лизин, аргинин, гистидин). Изменение заряда аминокислот приводит к изменению их взаимодействия друг с другом при формировании третичной структуры белковой молекулы, изменению заряда белка и появлению другой конфигурации активного центра и, следовательно, субстрат связывается или не связывается с активным центром.

Изменение активности ферментов при сдвиге рН может нести и адаптивные функции. Так, например, в печени ферменты глюконеогенеза требуют меньшей рН, чем ферменты гликолиза , что удачно сочетается с закислением жидкостей организма при голодании или физической нагрузке.

Для большинства людей сдвиги величины рН крови за пределы 6,8-7,8 (при норме 7,35-7,45) несовместимы с жизнью из-за дисбаланса скорости ферментативных реакций. В то же время у некоторых марафонцев обнаружено снижение рН крови в конце дистанции до 6,8-7,0. И ведь при этом они сохраняли работоспособность!

3. Зависимость от количества фермента

При увеличении количества молекул фермента скорость реакции возрастает непрерывно и прямо пропорционально количеству фермента, т.к. большее количество молекул фермента производит большее число молекул продукта.

Введение

На сегодняшний день остро стоит проблема совершенствования методов диагностики различных заболеваний человека. В медицине достаточно давно применяются в качестве диагностических инструментов анализы крови и анализы мочи. При этом чаще используется именно биохимический анализ крови. Однако, как свидетельствует практика, для выявления некоторых видов заболеваний, например патологий почек и мочевыводящих путей большей диагностической ценностью обладает не биохимический анализ сыворотки крови, а биохимический анализ мочи. Все это определяет актуальность выбора темы работы.

И если раньше лечащие врачи в основном обращали внимание на уровень глюкозы, общего белка, мочевины, креатинина в моче, а из ферментов - на уровень амилазы (диастазы), то за последнее десятилетие значительную популярность приобрели тесты на ферментный спектр мочи. Подобная методика очень востребована не только в диагностике нефропатологий, но и при раннем выявлении тяжёлых заболеваний у новорождённых, при комплексной диагностике заболеваний.

Энзимодиагностика - один из важнейших разделов клинической биохимии, который имеет свои задачи, направления и специфические исследовательские приёмы. В этой области достигнуты значительные успехи: открыт и выделен ряд новых ферментов; изучена их роль в разных звеньях метаболизма; создана концепция науки о ферментах, которая рассматривает заболевание как последовательные нарушения в структуре и функциях энзимов. Благодаря этим достижением стало возможным раскрытие патогенеза многих заболеваний на молекулярном уровне, создание не только эффективных методов диагностики, но профилактики, лечение больных. Поэтому в докладе мы рассмотрим биохимическую и физиологическую сущность ферментов и набор основных энзимов в моче человека.

Ферменты: биохимическое строение и физиологическая роль

Ферменты (энзимы) - это специфические белки, которые выполняют в организме роль биологических катализаторов.

Являясь белками, ферменты имеют первичную, вторичную, третичную и многие из них - четвертичную структуру.

При гидролизе ферментов образовывается смесь аминокислот. Известно свыше 20 различных аминокислот, входящих в состав белков.

Ферменты имеют общие с белками физико-химические свойства:

При гидролизе расщепляются на аминокислоты;

Имеют высокую молекулярную массу;

Создают коллоидные растворы;

Плохо кристаллизуются;

Очень неустойчивы к высоким температурам солей, тяжелых металлов, кислот, щелочей и т.п;

Имеют антигенные свойства.

Молекулярная масса ферментов характеризуется широкой вариацией - от нескольких десятков тысяч до несколько миллионов.

Ферменты отличаются по своей структуре. Их разделяют на 2 группы - простые и сложные. Простые, или однокомпонентные ферменты составляются только из аминокислот. К ним относятся небольшое количество ферментов (рибонуклеаза, амилаза, альдолаза, уреаза, пепсин и др.). Но большинство ферментов состоит из двух компонентов: небелковой части или простетической группы и белковой части - апофермента (рис. 1). Эти две части фермента отдельно не имеют силы, но только в комплексе друг с другом они проявляют каталитическую способность.

Небелковый компонент распада ферментов называется коферментом.

Многие коферменты являются витаминами или их производными. В данное время биохимии известно свыше 300 отдельных ферментов (а, возможно в ближайшее время их станет больше, так как наука не стоит на месте), в состав которых входят в качестве коферментов витамины или их производные. Как следствие, при авитаминозах в организме наблюдается нарушение деятельности всех ферментных систем.

Рисунок 1 Схема строения ферментов

Для определения механизма действия ферментов было предложено немало теорий. Оказалось, что катализаторы лишь сокращают время, необходимое для достижения равновесия химической реакции. Большинство химических реакций в живых организмах нуждается в «запуске», что и выполняют ферменты (рис. 2).

В основе жизнедеятельности организма лежат химические преобразования разных веществ, скорость которых определяют ферменты - биологические катализаторы. Пищеварение, использование всех полезных веществ, которые поступили в организм, рост, свертывание крови, мышечные сокращения и много других физиологических процессов - все это построено на четкой, последовательной работе ферментных систем.

Важнейшим признаком ферментов является не только их свойство ускорять протекание химических реакций, но выборочно катализировать лишь определенный путь преобразования данного субстрата. Это одна из основных функций ферментов по сравнению с небиологическими катализаторами.

Возвратность ферментативных реакций заключается в способности ферментов катализировать прямую и обратную реакцию. Так, например, липаза может при определенных условиях расцепить жир до глицерина и жирных кислот, а также катализировать его синтез из продуктов распада. Способность ферментов ускорять химические процессы, как в сторону синтеза, так и распада, имеет большое значение, так как создает возможность переключения этих процессов с одного на другой, чем обеспечивает тесную взаимосвязь катаболизма и анаболизма, гибкость и приспособленность обмена веществ к влиянию внешних и внутренних факторов.


Рисунок 2 Схема механизма действия ферментов

Ферменты очень чувствительные к изменению ph среды (то есть к степени кислотности и щёлочности), в которой они действуют. Каждый фермент имеет оптимум ph, при котором он наиболее активен.

Для большинства ферментов оптимальная среда близка к нейтральному уровню кислотно-щелочной среды (ph около 7,0), так как максимальная активность ферментов проявляется при физиологических значениях ph, а в кислой или щелочной среде их активность снижается. Но и из этого правила есть исключения, и их немало. Например, пепсин, который находится в желудочном соке, активируется лишь в очень кислой среде (ph 1,5 - 2,5). Ферменты очень чувствительные и к температуре, как мы убедились. При повышении температуры до 40-500 ?С повышается активность большинства ферментов, что отвечает общеизвестному закону ускорения химических реакций с повышением температуры. Установлено, что повышение температуры на каждых 100 ?С увеличивает скорость ферментативной реакции в 1,5 - 2 раза. И потому необходимо придерживаться температурного режима при проведении проб на ферменты.

Преобразование ферментов происходит подобно другим обменам белков организма. Ферменты постоянно обновляются, синтезируются и распадаются, что обеспечивает их надлежащий уровень в тканях.

В результате секреции или отмирании клеток ферменты попадают в кровь. Пути вывода ферментов из крови различны. В плазме крови проходит инактивация ферментов, потом они поглощаются клетками ретикулоэндотелиальной системы, где вследствие катаболизма, распадаются. Часть ферментов выводится через мочевыводящие пути и желудочно-кишечный тракт. Но, вывод ферментов с мочой и желчью занимает небольшой удельный вес в механизме вывода ферментов из организма. В основном, ферменты распадаются в плазме крови и тканях и выводятся их неиспользованные конечные продукты обычными для белков каналами. Тем не менее, анализ мочи на содержание ферментов является очень важным диагностическим инструментом, позволяющим выявить многие патологические процессы в организме.

В зависимости от типа катализируемых реакций, все ферменты делят на шесть классов и несколько подклассов. Согласно этой классификации каждый фермент обозначают шифром, который включает номера класса, подкласса и порядковый номер фермента в подподклассе (табл. 1).

Таблица 1 Классификация ферментов по А.Ш. Бишевскому и О.А. Терсенову