Металлы в земной коре. Нахождение металлов в природе Какие металлы находятся в земной коре


По распространенности в природе первое место среди металлов занимает алюминий (А1): в земной коре его на 60 процентов больше, чем железа. Однако широко использовать его стали лишь во второй половине ХХ века. Дело в том, что извлечь алюминий из руд очень трудно. В 1825 году датский ученый Ханс Кристиан Эрстед (1777–1851) сумел выделить небольшое количество алюминия, но с примесями. После него многие химики безуспешно пытались очистить алюминий, но лишь в 1854 году француз Анри Этьенн Сент-Клер Девиль (1818–1881) нашел способ выделить чистый металл. Алюминий настолько химически активен, что пришлось использовать металлический натрий (еще более активный элемент), чтобы «уберечь» алюминий от вступления в реакцию с другими веществами. Алюминий, похожий по цвету на серебро, на первых порах ценился очень дорого – наравне с драгоценными металлами. С 1855 по 1890 год было получено всего 200 тонн алюминия. В то время только император Наполеон III мог позволить себе столовые приборы из алюминия и даже заказал погремушку из нового металла для своего юного наследника. А в США – в знак огромного уважения к основателю государства Джорджу Вашингтону – защитили его монумент сверху алюминиевым листом. Современный способ получения алюминия электролизом криолито-глиноземного расплава разработан в 1886 году.

На нашей планете очень много различных металлов. Есть такие, о которых мало кому известно, а существует и самый распространенный металл на Земле. Такой металл является наиболее часто встречаемым на нашей планете и играет невероятную роль для развития всего человечества. В нашей стране самыми распространенными металлами по добыче являются хром, железо и марганец. Но если брать по всему миру в целом, то на вопрос, какой металл самый распространенный на Земле, можно уверенно ответить – алюминий.

Основные характеристики алюминия

Самый распространенный металл в земной коре содержится в количестве около девяти процентов из общего состава. Такое количество металла, который был открыт в 1825 году, действительно впечатляет – по мнению ученых, даже в далеком будущем не предвидится истощение его запасов. Однако в чистом виде в природе алюминий не встречается – это обусловлено сильной химической активностью металла. Зато ученые выявили множество минералов, в составе которых самый распространенный металл присутствует.

Высоко ценится алюминий за свои свойства. Он является прочным, пластичным, легким, не вызывает трудностей при обработке. Он устойчив к коррозии, обладает высокой степенью проводимости тепла, является электропроводимым, легко поддается ковке, прокатке, штамповке, а также сварке.

Высокая популярность алюминия объясняется его прочностными характеристиками и долгим сроком службы. Также металл не имеет в составе вредных компонентов, что свидетельствует об его высочайшей экологичности.


Присутствие не только в земной коре

Интересным является тот факт, что алюминий встречается не только в коре Земли – есть он и в живых организмах. Накапливается металл в печени, поджелудочной и щитовидной железах. В говядине алюминия содержится примерно семьдесят миллиграммов на один килограмм.

Часто используемый металл: применение

Из-за своей распространенности алюминий очень широко используется в различных сферах жизни. Поэтому совершенно неудивительно, что данный металл серебристого цвета применяется в различных отраслях промышленности (авиационная, космическая, строительство, автомобилестроение).


А сколько посуды изготавливается из этого замечательного металла – фляжки, ложки, вилки, миски, чашки и т.д. Еще сто пятьдесят лет назад из такой посуды принимали пищу лишь богатейшие люди, ведь до конца девятнадцатого столетия алюминий по своей ценности превышал даже серебро. Из этого серебристого металла изготавливали не только посуду, но и украшения, которые любили показать всему свету знатные особы. Сегодня же из алюминиевой посуды может есть каждый, и она не считается дорогостоящей. Однако степень распространенности металла от этого ничуть не снижается.

Все характеристики, присущие алюминию, позволяют применять его практически везде. Главным образом, используются сплавы, которые требуются для применения в сферах от электротехники до космических разработок. Широко применяется алюминий для производства взрывчатых веществ.

Распространенным сплавом считается дюралюминий, который применяется при производстве фюзеляжей и крыльев летательных аппаратов. А во Франции даже имеется океанский лайнер, выполненный полностью из алюминия – длина такого судна составляет 300 метров. Причем судно имеет не только алюминиевый корпус, но и многие его «внутренности» (стены кают, переборки, мебель) выполнены из этого серебристого металла.

Еще сравнительно недавно редко можно было встретить на окнах алюминиевые рамы. Сегодня же это повсеместное явление – особенно окна с алюминиевыми профилями используются при остеклении балконов. Также алюминиевый профиль применяется при изготовлении рекламных баннеров, перегородок, рам для штендеров и т.д.

Распространенные драгоценные металлы


Лидером среди драгоценных металлов по распространенности является родий. Он отличается высокой стойкостью к коррозии, химическим воздействиям и плавлению. За эти характеристики пользуется большим спросом в автомобилестроении. Вторым распространенным среди драгоценных металлов идет платина, из которой изготавливаются ювелирные украшения.

Как ни странно - алюминий

Самым распространенным металлом на земле является алюминий. Алюминий (лат. Aluminium), Al - химический элемент III группы периодической системы Менделеева. Атомный номер 13, атомная масса 26,9815. Серебристо-белый легкий металл. Состоит из одного стабильного изотопа 27 Al .

Историческая справка

Название Алюминий происходит от лат. alumen - так еще за 500 лет до н. э. назывались алюминиевые квасцы, которые применялись как протрава при крашении тканей и для дубления кожи. Датский ученый X. К. Эрстед в 1825, действуя амальгамой калия на безводный АlСl 3 и затем отгоняя ртуть, получил относительно чистый Алюминий. Первый промышленный способ производства Алюминия предложил в 1854 французский химик А. Э. Сент-Клер Девиль: способ заключался в восстановлении двойного хлорида Алюминия и натрия Na 3 AlCl 6 металлическим натрием. Похожий по цвету на серебро, Алюминий на первых порах ценился очень дорого. С 1855 по 1890 годы было получено всего 200 т Алюминия. Современный способ получения Алюминия электролизом криолитоглиноземного расплава разработан в 1886 году одновременно и независимо друг от друга Ч. Холлом в США и П. Эру во Франции.

Распространение Алюминия в природе

По распространенности в природе Алюминий занимает 3-е место после кислорода и кремния и 1-е - среди металлов. Его содержание в земной коре составляет по массе 8,80% . В свободном виде Алюминий в силу своей химической активности не встречается. Известно несколько сотен минералов Алюминия, преимущественно алюмосиликатов. Промышленное значение имеют боксит, алунит и нефелин. Нефелиновые породы беднее бокситов глиноземом, но при их комплексном использовании получаются важные побочные продукты: сода, поташ, серная кислота. В СССР разработан метод комплексного использования нефелинов. Нефелиновые руды в СССР образуют, в отличие от бокситов, весьма крупные месторождения и создают практически неограниченные возможности для развития алюминиевой промышленности.

Физические свойства Алюминия

Алюминий сочетает весьма ценный комплекс свойств: малую плотность, высокие теплопроводность и электрическую проводимость, высокую пластичность и хорошую коррозионную стойкость. Он легко поддается ковке, штамповке, прокатке, волочению. Алюминий хорошо сваривается газовой, контактной и других видами сварки. Решетка Алюминия кубическая гранецентрированная с параметром а = 4,0413 Å. Свойства Алюминий, как и всех металлов, в значит, степени зависят от его чистоты. Свойства Алюминия особой чистоты (99,996%): плотность (при 20°С) 2698,9 кг/м 3 ; t пл 660,24°С; t кип около 2500°С; коэффициент термического расширения (от 20° до 100°С) 23,86·10 -6 ; теплопроводность (при 190°С) 343 вт/м·К , удельная теплоемкость (при 100°С) 931,98 дж/кг·К. ; электропроводность по отношению к меди (при 20 °С) 65,5%. Алюминий обладает невысокой прочностью (предел прочности 50-60 Мн/м 2), твердостью (170 Мн/м 2 по Бринеллю) и высокой пластичностью (до 50%). При холодной прокатке предел прочности Алюминия возрастает до 115 Мн/м 2 , твердость - до 270 Мн/м 2 , относительное удлинение снижается до 5% (1 Мн/м 2 ~ и 0,1 кгс/мм 2). Алюминий хорошо полируется, анодируется и обладает высокой отражательной способностью, близкой к серебру (он отражает до 90% падающей световой энергии). Обладая большим сродством к кислороду, Алюминий на воздухе покрывается тонкой, но очень прочной пленкой оксида Al 2 О 3 , защищающей металл от дальнейшего окисления и обусловливающей его высокие антикоррозионные свойства. Прочность оксидной пленки и защитное действие ее сильно убывают в присутствии примесей ртути, натрия, магния, меди и др. Алюминий стоек к действию атмосферной коррозии, морской и пресной воды, практически не взаимодействует с концентрированной или сильно разбавленной азотной кислотой, с органических кислотами, пищевыми продуктами.

Химические свойства Алюминия

Внешняя электронная оболочка атома Алюминия состоит из 3 электронов и имеет строение 3s 2 3р 1 . В обычных условиях Алюминий в соединениях 3-валентен, но при высоких температурах может быть одновалентным, образуя так называемых субсоединения. Субгалогениды Алюминия, AlF и АlСl, устойчивые лишь в газообразном состоянии, в вакууме или в инертной атмосфере, при понижении температуры распадаются (диспропорционируют) на чистый Аl и AlF 3 или АlСl 3 и поэтому могут быть использованы для получения сверхчистого Алюминия. При накаливании мелкоизмельченный или порошкообразный Алюминий энергично сгорает на воздухе. Сжиганием Алюминия в токе кислорода достигается температура выше 3000°С. Свойством Алюминия активно взаимодействовать с кислородом пользуются для восстановления металлов из их оксидов (Алюминотермия). При темно-красном калении фтор энергично взаимодействует с Алюминием, образуя AlF 3 . Хлор и жидкий бром реагируют с Алюминием при комнатной температуре, иод - при нагревании. При высокой температуре Алюминий соединяется с азотом, углеродом и серой, образуя соответственно нитрид AlN, карбид Al 4 C 3 и сульфид Al 2 S 3 . С водородом Алюминий не взаимодействует; гидрид Алюминия (AlН 3) X получен косвенным путем. Большой интерес представляют двойные гидриды Алюминия и элементов I и II групп периодической системы состава МеН n · n AlH 3 , так называемые алюмогидриды. Алюминий легко растворяется в щелочах, выделяя водород и образуя алюминаты. Большинство солей Алюминия хорошо растворимо в воде. Растворы солей Алюминия вследствие гидролиза показывают кислую реакцию.

Получение Алюминия

В промышленности Алюминий получают электролизом глинозема Аl 2 О 3 , растворенного в расплавленном криолите NasAlF 6 при температуре около 950° С. Используются электролизеры трех основных конструкций: 1) электролизеры с непрерывными самообжигающимися анодами и боковым подводом тока, 2) то же, но с верхним подводом тока и 3) электролизеры с обожженными анодами. Электролитная ванна представляет собой железный кожух, футерованный внутри тепло- и электро-изолирующим материалом - огнеупорным кирпичом, и выложенный угольными плитами и блоками. Рабочий объем заполняется расплавленным электролитом, состоящим из 6-8% глинозема и 94-92% криолита (обычно с добавкой AlF 3 и около 5-6% смеси фторидов калия и магния). Катодом служит подина ванны, анодом - погруженные в электролит угольные обожженные блоки или же набивные самообжигающиеся электроды. При прохождении тока на катоде выделяется расплавленный Алюминий, который накапливается на подине, а на аноде - кислород, образующий с угольным анодом CO и CO 2 . К глинозему, основному расходуемому материалу, предъявляются высокие требования по чистоте и размерам частиц. Присутствие в нем оксидов более электроположительных элементов, чем Алюминий, ведет к загрязнению Алюминия. При достаточном содержании глинозема ванна работает нормально при электрическом напряжении порядка 4-4,5 В. Ванны присоединяют к источнику постоянного тока последовательно (сериями из 150-160 ванн). Современные электролизеры работают при силе тока до 150 кА. Из ванн Алюминий извлекают обычно с помощью вакуум-ковша. Расплавленный Алюминий чистотой 99,7% разливают в формы. Алюминий высокой чистоты (99,9965%) получают электролитическим рафинированием первичного Алюминия с помощью так называемых трехслойного способа, снижающего содержание примесей Fe, Si и Сu. Исследования процесса электролитического рафинирования Алюминия с применением органических электролитов показали принципиальную возможность получения Алюминий чистотой 99,999% при относительно низком расходе энергии, но пока этот метод обладает низкой производительностью. Для глубокой очистки Алюминий применяют зонную плавку или дистилляцию его через субфторид.

Применение Алюминия

При электролитическом производстве Алюминия возможны поражения электрическим током, высокой температурой и вредными газами. Для избежания несчастных случаев ванны надежно изолируют, рабочие пользуются сухими валенками, соответствующей спецодеждой. Здоровая атмосфера поддерживается эффективной вентиляцией. При постоянном вдыхании пыли металлического Алюминия и его оксида может возникнуть алюминоз легких. У рабочих, занятых в производстве Алюминия, часты катары верхних дыхательных путей (риниты, фарингиты, ларингиты). Предельно допустимая концентрация в воздухе пыли металлического Алюминий, его оксида и сплавов 2 мг/м 3 .

Сочетание физических, механических и химических свойств Алюминия определяет его широкое применение практически во всех областях техники, особенно в виде его сплавов с других металлами. В электротехнике Алюминий успешно заменяет медь, особенно в производстве массивных проводников, например, в воздушных линиях, высоковольтных кабелях, шинах распределительных устройств, трансформаторах (электрическая проводимость Алюминия достигает 65,5% электрической проводимости меди, и он более чем в три раза легче меди; при поперечном сечении, обеспечивающем одну и ту же проводимость, масса проводов из Алюминий вдвое меньше медных). Сверхчистый Алюминий употребляют в производстве электрических конденсаторов и выпрямителей, действие которых основано на способности оксидной пленки Алюминия пропускать электрический ток только в одном направлении. Сверхчистый Алюминий, очищенный зонной плавкой, применяется для синтеза полупроводниковых соединений типа А III B V ,применяемых для производства полупроводниковых приборов. Чистый Алюминий используют в производстве разного рода зеркальных отражателей. Алюминий высокой чистоты применяют для предохранения металлических поверхностей от действия атмосферной коррозии (плакирование, алюминиевая краска). Обладая относительно низким сечением поглощения нейтронов, Алюминий применяется как конструкционный материал в ядерных реакторах.

В алюминиевых резервуарах большой емкости хранят и транспортируют жидкие газы (метан, кислород, водород и т. д.), азотную и уксусную кислоты, чистую воду, перекись водорода и пищевые масла. Алюминий широко применяют в оборудовании и аппаратах пищевой промышленности, для упаковки пищевых продуктов (в виде фольги), для производства разного рода бытовых изделий. Резко возросло потребление Алюминий для отделки зданий, архитектурных, транспортных и спортивных сооружений.

Алюминий в металлургии

В металлургии Алюминий (помимо сплавов на его основе)- одна из самых распространенных легирующих добавок в сплавах на основе Сu, Mg, Ti, Ni, Zn и Fe. Применяют Алюминий также для раскисления стали перед заливкой ее в форму, а также в процессах получения некоторых металлов методом алюминотермии. На основе Алюминия методом порошковой металлургии создан САП (спеченный алюминиевый порошок), обладающий при температурах выше 300°С большой жаропрочностью.

Алюминий используют в производстве взрывчатых веществ (аммонал, алюмотол). Широко применяют различные соединения Алюминия.

Производство и потребление Алюминия непрерывно растет, значительно опережая по темпам роста производство стали, меди, свинца, цинка.

Геохимия Алюминия

Геохимические черты Алюминия определяются его большим сродством к кислороду (в минералах Алюминий входит в кислородные октаэдры и тетраэдры), постоянной валентностью (3), слабой растворимостью большинства природных соединений. В эндогенных процессах при застывании магмы и формировании изверженных пород Алюминий входит в кристаллическую решетку полевых шпатов, слюд и других минералов - алюмосиликатов. В биосфере Алюминий- слабый мигрант, его мало в организмах и гидросфере. Во влажном климате, где разлагающиеся остатки обильной растительности образуют много органических кислот, Алюминий мигрирует в почвах и водах в виде органоминеральных коллоидных соединений; Алюминий адсорбируется коллоидами и осаждается в нижней части почв. Связь Алюминия с кремнием частично нарушается и местами в тропиках образуются минералы - гидрооксиды Алюминия- бемит, диаспор, гидраргиллит. Большая же часть Алюминия входит в состав алюмосиликатов - каолинита, бейделлита и других глинистых минералов. Слабая подвижность определяет остаточное накопление Алюминия в коре выветривания влажных тропиков. В результате образуются элювиальные бокситы. В прошлые геологические эпохи бокситы накапливались также в озерах и прибрежной зоне морей тропических областей (например, осадочные бокситы Казахстана). В степях и пустынях, где живого вещества мало, а воды нейтральные и щелочные, Алюминий почти не мигрирует. Наиболее энергична миграция Алюминия в вулканических областях, где наблюдаются сильнокислые речные и подземные воды, богатые Алюминием. В местах смещения кислых вод с щелочными - морскими (в устьях рек и других), Алюминий осаждается с образованием бокситовых месторождений.

Алюминий в организме

Алюминий входит в состав тканей животных и растений; в органах млекопитающих животных обнаружено от 10 -3 до 10 -5 % Алюминия (на сырое вещество). Алюминий накапливается в печени, поджелудочной и щитовидной железах. В растительных продуктах содержание Алюминия колеблется от 4 мг на 1 кг сухого вещества (картофель) до 46 мг (желтая репа), в продуктах животного происхождения - от 4 мг (мед) до 72 мг на 1 кг сухого вещества (говядина). В суточном рационе человека содержание Алюминия достигает 35-40 мг. Известны организмы - концентраторы Алюминия, например, плауны (Lycopodiaceae), содержащие в золе до 5,3% Алюминия, моллюски (Helix и Lithorina), в золе которых 0,2-0,8% Алюминия. Образуя нерастворимые соединения с фосфатами, Алюминий нарушает питание растений (поглощение фосфатов корнями) и животных (всасывание фосфатов в кишечнике).

По материалам chem100.ru

Металлы малой химической активности (Cu, Ag, Au, Pt, Hg) встречаются в свободном виде или в виде вкраплений в горные породы. Большая часть металлов присутствует в природе в виде руд и соединений. Они образуют оксиды, сульфиды, карбонаты и другие химические вещества. Для получения чистых металлов и дальнейшего их применения необходимо выделить их из руд и провести очистку. При необходимости проводят легирование и другую обработку металлов. Изучением этого занимается наука металлургия, которая различает руды чёрных металлов (на основе железа) и цветных (в их состав не входит железо, всего около 70 элементов). Исключением можно назвать около 16 элементов: т.н. благородные металлы (золото серебро и др.), и некоторые другие (например, ртуть, медь), которые присутствуют без примесей.

Кроме того, в малых количествах они присутствуют в морской воде (1,05%, -- 0,12%), растениях, живых организмах (играя при этом важную роль).

В природе металлы встречаются:

  • -- в самородном состоянии: серебро, золото, платина, медь, иногда ртуть;
  • -- в виде оксидов: магнетит Fe 3 O 4 , гематит Fe 2 О 3 и др.
  • -- в виде смешанных оксидов: каолин Аl 2 O 3 * 2SiO 2 * 2Н 2 О, алунит (Na,K) 2 O * АlО 3 * 2SiO 2 и др.
  • -- различных солей:

сульфидов: галенит PbS, киноварь НgS,

хлоридов: сильвин КС1, галит NaCl, сильвинит КСl* NаСl, карналлит КСl * МgСl 2 * 6Н 2 О,

сульфатов: барит ВаSO 4 , ангидрид Са 8 О 4

фосфатов: апатит Са 3 (РО 4) 2 ,

карбонатов: мел, мрамор СаСО 3 , магнезит МgСО 3 .

Так, основная масса алюминия сосредоточена в алюмосиликатах, из которых наиболее распространены полевые шпаты. Главные их представители - минералы ортоклаз K, альбит Na и анорит Са . Очень распространены минералы группы слюд, например, мусковит Kal 2 2 , большое практическое применение имеет минерал нефелин (Na, K) 2 (используется для получения глинозема, содовых продуктов и цемента). Из других минералов наибольшее практическое распространение находят боксит Al 2 O 3 *nH 2 O и криолит Na 3 AlF 6 . Распространенным продуктом разрушения горных пород является каолин, состоящий в основном из глинистого минерала каолинита Al 2 O 3 *2SiO 2 *2H 2 O.

Большая часть кальция встречается в природе в виде отложений известняков и мела, состоящих в основном из минерала кальцита CaCO 3 , а также мрамора. Из других пород наиболее распространены доломит CaCO 3 *MgCO 3 , ангидрит CaSO 4 и гипс CaSO 4 *2H 2 O, флюорит CaF 2 и апатит 3Ca 3 (PO 4) 2 *Ca(F, Cl) 2 . В немалых количествах встречается кальций в различных силикатах, например CfO*3MgO*4SiO 2 (асбест), и алюмосиликатах.

Магний распространен в природе в виде магнезита MgCO 3 и доломита, силиката Mg 2 SiO 4 (оливин), каинита KCl*MgSO 4 *3H 2 O и карналлита KCl*MgCl 2 *6H 2 O. Природными соединениями щелочных металлов являются сильвинит NaCl*KCl, галит NaCl, мирабилит Na 2 SO 4 *10H 2 O.

Железо - самый распространенный после алюминия металл на земном шаре. Оно входит в состав многочисленных минералов, образующих скопления железных руд: гематита Fe 2 O 3 , магнетита Fe 3 O 4 , гидрогетита HFeO 2 *nH 2 O, сидерита FeCO 3 и др.

Изредка встречаются и самородное железо метеорного или земного происхождения.

Многие металлы часто сопутствуют основным природным минералам: скандий входит в состав оловянных, вольфрамовых руд, кадмий -- в качестве примеси в цинковые руды, ниобий и тантал -- в оловянные. Железным рудам всегда сопутствуют марганец, никель, кобальт, молибден, титан, германий, ванадий.

Какой металл наиболее распространен в земной коре?

По распространенности в природе первое место среди металлов занимает алюминий (А1): в земной коре его на 60 процентов больше, чем железа. Однако широко использовать его стали лишь во второй половине ХХ века. Дело в том, что извлечь алюминий из руд очень трудно. В 1825 году датский ученый Ханс Кристиан Эрстед (1777–1851) сумел выделить небольшое количество алюминия, но с примесями. После него многие химики безуспешно пытались очистить алюминий, но лишь в 1854 году француз Анри Этьенн Сент-Клер Девиль (1818–1881) нашел способ выделить чистый металл. Алюминий настолько химически активен, что пришлось использовать металлический натрий (еще более активный элемент), чтобы «уберечь» алюминий от вступления в реакцию с другими веществами. Алюминий, похожий по цвету на серебро, на первых порах ценился очень дорого – наравне с драгоценными металлами. С 1855 по 1890 год было получено всего 200 тонн алюминия. В то время только император Наполеон III мог позволить себе столовые приборы из алюминия и даже заказал погремушку из нового металла для своего юного наследника. А в США – в знак огромного уважения к основателю государства Джорджу Вашингтону – защитили его монумент сверху алюминиевым листом. Современный способ получения алюминия электролизом криолито-глиноземного расплава разработан в 1886 году.