Кондуктивный теплообмен. Кондуктивный перенос тепла. Смотреть что такое "теплообмен кондуктивный" в других словарях


Этот вид теплообмена происходит между соприкасающимися частицами тела, находящимися в температурном поле

T = f ( x , у, z , t ), характеризуемом градиентом температуры grad Т. Градиент температуры - это вектор, направленный по нормали n 0 к изотермической поверхности в сторону возрастания температуры:

grad Т = п o dT/dn = п o T

Различают тепловые поля: одномерные, двухмерные и трехмерные ; стационарные и нестационарные; изотропные и анизотропные .

Аналитическое описание процесса кондуктивного теплообмена базируется на фундаментальном законе Фурье, связавшем характеристики стационарного теплового потока, распространяющегося в одномерной изотропной среде, геометрические и теплофизические параметры среды:

Q =λ(T 1 –T 2 )S/l t или Р = Q /t =λ (T 1 –T 2 )S/l

где: - Q - количество теплоты, переносимой через образец за время t , кал;

λ - коэффициент теплопроводности материала образца, Вт/(м- град.);

Т 1 , Т 2 - соответственно температуры «горячего» и «холодного» сечений образца, град.;

SS - площадь сечения образца, м 2 ;

l - длина образца, м;

Р - тепловой поток, Вт.

Опираясь на понятие электротепловой аналогии, согласно которому тепловым величинам Р и T ставят в соответствие электрический ток I и электрический потенциал U , представим закон Фурье в виде «закона Ома» для участка тепловой цепи:

P = (T 1 –T 2 )/l / λS = (T 1 –T 2 )/R T (4.2)

Здесь по физическому смыслу параметр R T есть тепловое сопротивление участка тепловой цепи, а 1/λ - удельное тепловое сопротивление. Такое представление процесса кондуктивного теплообмена позволяет рассчитывать параметры тепловых цепей, представленных топологическими моделями, известными методами расчета электрических цепей. Тогда подобно тому, как для электрической цепи выражение для плотности тока в векторной форме имеет вид

j = – σ grad U ,

для тепловой цепи закон Фурье в векторной форме будет иметь вид

p = - λ grad Т ,

где р - плотность теплового потока, а знак минус указывает на то, что тепловой поток распространяется от нагретого к более холодному сечению тела.

Сравнив выражения (4.1) и (4.2), увидим, что для кондуктивного теплообмена

a = a кд = λ / l

Таким образом, для повышения эффективности процесса теплопередачи необходимо сокращать длину l тепловой цепи и увеличивать ее теплопроводность λ

Обобщенной формой описания процесса кондуктивного теплообмена является дифференциальное уравнение теплопроводности, которое представляет собой математическое выражение законов сохранения энергии и Фурье:

ср dT / dt = λ x d 2 T / dx 2 + λ y d 2 T / dy 2 + λ z d 2 T / dz 2 + W v

где с - удельная теплоемкость среды, Дж/(кг- К);

р - плотность среды, кг/м 3 ;

W v - объемная плотность внутренних источников, Вт/м 3 ;

λ x λ y λ z - удельные теплопроводности в направлениях координатных осей (для анизотропной среды).

4.2.2. Конвективный теплообмен

Этот вид теплообмена представляет собой сложный физический процесс, при котором перенос теплоты с поверхности нагретого тела в окружающее пространство происходит за счет омывания его потоком теплоносителя - жидкости или газа - с более низкой, чем у нагретого тела, температурой. При этом параметры температурного поля и интенсивность конвективного теплообмена зависят от характера движения теплоносителя, его теплофизи-чсских характеристик, а также от формы и размеров тела.

Так, движение потока теплоносителя может быть свободным и вынужденным, что соответствует явлениям естественной и вы­нужденной конвекции. Кроме того, различают ламинарный и турбулентны й режимы движения потока, а также их промежуточные состояния, зависящие от соотношения сил, определяющих эти движения потока - сил внутреннего трения, вязкости и инерции.

Одновременно с конвективным происходит и кондуктивный теплообмен за счет теплопроводности теплоносителя, однако эффективность его низка из-за относительно малых значений коэффициента теплопроводности жидкостей и газов. В общем случае этот механизм теплообмена описывает закон Ньютона-Рихмана:

Р = a KB S ( T 1 - Т 2 ), (4.3)

где: a KB - коэффициент теплоотдачи конвекцией, Вт/(м 2 -град.);

T 1 - Т 2 2 - соответственно температуры стенки и теплоносителя, К;

S - поверхность теплообмена, м 2 .

При внешней простоте описания закона Ньютона-Рихмана сложность количественной оценки эффективности процесса конвективного теплообмена состоит в том, что значение коэффициента a KB зависит от множества факторов, т.е. является функцией многих параметров процесса. Найти в явном виде зависимость a KB = f а 1 , a 2 , ..., а j , ..., а n ) часто невозможно, так как параметры процесса зависят еще и от температуры.

Решить эту задачу для каждого конкретного случая помогает теория подобия, изучающая свойства подобных явлений и методы установления их подобия. В частности, доказано, что протекание сложного физического процесса определяют не отдельные.его физические и геометрические параметры, а безразмерные степенные комплексы, составленные из параметров, существенных для протекания данного процесса, которые называются критериями подобия . Тогда математическое описание сложного процесса сводится к составлению из этих критериев, один из которых содержит искомую величину а кв, критериального уравнения , вид которого справедлив для любой из разновидностей данного процесса. Если же составить критерии подобия не удается, это означает, что либо какой-то важный параметр процесса упущен из рассмотрения, либо какой-то параметр данного процесса может быть изъят из рассмотрения без большого ущерба.

Реальные условия перуоса массы и энергии в различного рода теплотехнических процессах и явлениях природы характеризуются сложным комплексом взаимосвязанных явлений, включающих процессы радиационного, кондуктивж i конвективного теплообмена. Радиационно-кондуктивный теплообмен - к из наиболее распространенных видов теплообмена в природе и техник

Математическая форму овка задачи о радиационно-кондуктивном теплообмене вытекает из уравнения энергии, дополненного соответствующими граничными условиями. В частности, при исследовании радиационно-кондуктивного теплообмена в плоском слое поглощающей и излучающей среды с непрозрачными серыми границами задача сводится к решению уравнения энергии

(26.10.2)

с граничными условиями

Здесь - безразмерная плотность потока результирующего излучения; - критерий радиационно-кондуктивного теплообмена; - критерий зависимости теплопроводности среды от температуры; - безразмерная температура в сечении слоя толщиной .

Уравнение (26.10.1) представляет собой нелинейное интегро-дифференциальное уравнение, так как в соответствии с уравнением (26.9.13) описывается интегральным выражением, а искомое значение температуры представлено в уравнении (26.10.1) как в явном, так и в неявном виде через равновесное значение плотности потока излучения:

На рис. 26.19 даны результаты решения уравнения (26.10.1), полученные Н. А. Рубцовым и Ф. А. Кузнецовой сведением его к интегральному уравнению с последующим численным решением на ЭВМ методом Ньютона. Приведенные результаты по температурному распределению в слое поглощающей среды с осредненным по частоте значением коэффициента объемного поглощения свидетельствуют о принципиальной важности учета совместного, радиационно-кондуктивного взаимодействия в переносе суммарной тепловой энергии.

Рис. 26.19. Температурное распределение в слое поглощающей среды оптической толщины при

Обращает на себя внимание чувствительность эффектов взаимодействия к оптическим свойствам границ (особенно для малых значений критерия радиационно-кондуктивного теплообмена: .

Снижение излучательной способности горячей стенки (см. рис. 26.19) ведет к перераспределению ролей радиационной и кондуктивной составляющих потока тепловой энергии. Роль излучения в теплоотдаче горячей стенки падает, и примыкающая к ней среда нагревается за счет кондукции от стенки. Последующий перенос тепловой энергии к холодной стенке складывается из кондукции и излучения за счет собственного излучения среды, при этом температура среды снижается по сравнению с тем значением, которое имела бы среда в случае одного кондуктивного теплопереноса. Смена оптических свойств границ ведет к коренной перестройке температурных полей.

В последние годы в связи с широким внедрением криогенной техники принципиально важной оказалась проблема теплообмена излучением при криогенных температурах (исследования оптических свойств, эффективности теплоизоляции в сверхпроводящих устройствах и криостатах). Однако и здесь трудно представить себе процессы радиационного теплообмена в рафинированном виде. На рис. 26.20 приведены результаты экспериментальных исследований, выполненных Н. А. Рубцовым и Я. А. Бальцевичем и отображающих кинетику температурных полей в системе металлических экранов при температурах жидкого азота и гелия. Там же представлен расчет установившегося температурного поля по уравнениям (26.4.1) в предположении, что основной механизм переноса тепла - излучение. Расхождение экспериментальных и расчетных результатов свидетельствует о наличии дополнительного, кондуктивного механизма переноса тепла, связанного с наличием между экранами остаточных газов. Следовательно, анализ подобной теплопередающей системы также связан с необходимостью рассматривать взаимосвязанный радиационно-кондуктивный теплообмен.

Простейшим примером комбинированного радиационно-конвективного теплообмена является перенос тепла в плоском слое поглощающего газа, вдуваемого в турбулентный поток высокотемпературного газа, обтекающего проницаемую пластину. С подобного рода постановками задач приходится сталкиваться как при рассмотрении течения в окрестности лобовой точки, так и при анализе оттеснения пограничного слоя интенсивным вдувом поглощающего газа через пористую пластину.

Проблема в целом сводится к рассмотрению следующей краевой задачи:

при граничных условиях

Здесь - критерий Больцмана, характеризующий радиационно-конвективное соотношение составляющих потока тепла в среде с постоянными теплофизическими свойствами - характеристические значения (в невозмущенной области либо на границе неравновесной системы) соответственно скорости и температуры; - безразмерная функция распределения скорости в области оттеснения пограничного слоя.

На рис. 26.21 представлены результаты численного решения задачи (26.10.3) -(26.10.4) для частного случая: ; степень черноты проницаемой пластины ; излучательная способность набегающего потока для различных значений Во. Как видно, в случае малых Во, характеризующих низкую интенсивность подвода газа через пористую пластину, температурный профиль формируется за счет радиационно-конвективного теплообмена. По мере увеличения Во роль конвекции в формировании температурного профиля становится преобладающей. С ростом оптической толщины слоя температура несколько увеличивается при малых Во и соответственно уменьшается по мере увеличения Во.

На рис. 26.22 построена зависимость характеризующая вдув поглощающего газа, гэтребного для поддержания теплоизолированного состояния пластины в зависимости от оптической толщины слоя оттеснения. Отмечается резко выраженная зависимость критерия Во от при малых , когда незначительное присутствие поглощающей компоненты газа позволяет заметно снизить расход вдуваемого газа. Эффективным оказывается создание высоко-отражающей поверхности, при условии что оптическая толщина вдуваемого газа невелика Учет селективного характера поглощения излучения в рассматриваемых условиях не вносит принципиальных изменений в характер температурных профилей. Этого нельзя сказать о потоках излучения, расчет которых без учета оптических окон прозрачности ведет к серьезным погрешностям.

Рис. 26.21. Температурное распределение в слое завесы с оптической толщиной

Рис. 26.20. Расчетная и экспериментальная кинетика температурных полей в системе металлических экранов при температурах жидкого азота и гелия ( - номер экрана; время, ч)

Рис. 26.22. Зависимость Во от оптической толщины слоя при и соответственно

Принципиальная важность учета селективности излучения в тепловых расчетах неоднократно отмечается в работах Л. М. Бибермана, посвященных решению сложных задач радиационной газовой динамики.

Помимо прямых численных методов исследования комбинированного радиационно-конвективного теплообмена определенный практический интерес представляют приближенные способы расчета. В частности, рассматривая предельный закон теплообмена в турбулентном пограничном слое при относительно слабом воздействии теплового излучения

(26.10.5)

полагаем, что представляет собой безразмерный комплекс радиационно-конвективного теплообмена, где - суммарный критерий Стентона, отображающий турбулентно-радиационный перенос тепла на стенку. При этом Ест, где - суммарный тепловой поток на стенке, имеющий конвективную и радиационную составляющие.

Турбулентный тепловой поток q аппроксимируем, как обычно, полиномом третьей степени коэффициенты которого определяются из граничных условий:

где Е - безразмерная плотность полусферического результирующего излучения во внутренних граничных точках пограничного слоя.

В граничные условия (26.10.6) включено уравнение энергии, составленное соответственно для условий околостенной области и на границе невозмущенного потока. Учитывая, что , безразмерный параметр , необходимый для вычисления записываем следующим образом:

Заметим, что граничные условия (26.10.6) определялись принятым условием образования вблизи поверхности, обтекаемой излучающей средой, теплового пограничного слоя. Это существенное обстоятельство позволило полагать

Что выполняется в условиях преобладающей

Конвекции.

Значения и определяются из анализа решений относительно плотности результирующего излучения применительно к условию замкнутой системы, составляющей пограничный слой. Турбулентный пограничный слой рассматривается как серая поглощающая среда с коэффициентом поглощения не зависящим от температуры . Обтекаемая поверхность - это серое, оптически однородное изотермическое тело . Невозмущенная часть потока, за пределами пограничного слоя, излучает как объемное серое тело , не отражающее со своей поверхности и находящееся при температуре невозмущенного потока . Все это позволяет воспользоваться результатами предыдущего рассмотрения переноса излучения в плоском слое поглощающей среды с той существенной разницей, что здесь может быть учтено лишь однократное отражение от поверхности обтекаемой пластины.

ПРЕДИСЛОВИЕ

«Гидравлика и теплотехника» является базовой общеинженерной дисциплиной для студентов, обучающихся по направлению «Защита окружающей среды». Она состоит из двух частей:

Теоретические основы технологических процессов;

Типовые процессы и аппараты промышленной технологии.

Вторая часть включает три основных раздела:

Гидродинамика и гидродинамические процессы;

Тепловые процессы и аппараты;

Массообменные процессы и аппараты.

По первой части дисциплины были опубликованы конспекты лекций Н.Х. Зиннатуллина, А.И. Гурьянова, В.К. Ильина (Гидравлика
и теплотехника, 2005); по первому разделу второй части дисциплины – учебное пособие Н.Х. Зиннатуллина, А.И. Гурьянова, В.К. Ильина, Д.А. Елдашева (Гидродинамика и гидродинамические процессы, 2010).

В данном пособии излагается второй раздел второй части. В этом разделе будут рассмотрены наиболее распространенные случаи кондуктивного и конвективного теплообмена, промышленные способы передачи тепла, выпаривание, а также принцип работы и конструкции теплообменной аппаратуры.

Учебное пособие состоит из трех глав, каждая из них заканчивается вопросами, которые студенты могут использовать для самоконтроля.

Основная задача представленного учебного пособия – научить студентов проводить инженерные расчеты тепловых процессов и подбор необходимой аппаратуры для их проведения.

ЧАСТЬ. 1. ТЕПЛООБМЕН

Промышленные технологические процессы протекают в заданном направлении только при определенных температурах, которые создаются путем подвода или отвода тепловой энергии (теплоты). Процессы, скорость протекания которых зависит от скорости подвода или отвода теплоты, называются тепловыми. Движущей силой тепловых процессов является разность температур между фазами. Аппараты, в которых осуществляются тепловые процессы, называются теплообменниками, в них тепло переносится теплоносителями.

Расчет теплообменных процессов сводится обычно к определению межфазной поверхности теплообмена. Эта поверхность находится
из уравнения теплопередачи в интегральной форме. Коэффициент теплопередачи, как известно, зависит от коэффициентов теплоотдачи фаз,
а также от термического сопротивления стенки. Ниже будут рассмотрены способы их определения, нахождение поля температур и тепловых потоков. Там, где это возможно, искомые величины находятся из решения уравнений законов сохранения, а в остальных случаях используются упрощенные математические модели или метод физического моделирования.

Конвективный теплообмен

При конвекции перенос теплоты происходит макрообъемными частицами потока теплоносителя. Конвекция всегда сопровождается теплопроводностью. Как известно, теплопроводность – явление молекулярное, конвекция – явление макроскопическое, при котором
в переносе теплоты участвуют целые слои теплоносителя с разными температурами. Конвекцией теплота переносится намного быстрее, чем теплопроводностью. Конвекция у поверхности стенки аппарата затухает.

Конвективный перенос теплоты описывается уравнением Фурье-Кирхгофа. Закономерности течения среды описываются уравнениями Навье-Стокса (ламинарный режим) и Рейнольдса (турбулентный режим), а также уравнением неразрывности. Исследование закономерностей конвективного теплообмена можно провести в изотермической и неизотермической постановке.

В изотермической постановке сначала решаются уравнения Навье-Стокса и неразрывности, затем полученные значения скоростей используются для решения уравнения Фурье-Кирхгофа. Полученные таким способом значения коэффициентов теплоотдачи впоследствии уточняются, корректируются.

В неизотермической постановке уравнения Навье-Стокса, неразрывности и Фурье-Кирхгофа решаются совместно, с учетом зависимости теплофизических свойств среды от температуры.
Как показывают экспериментальные данные, зависимости с р (Т ), l(Т )
и r(Т ) слабые, а m(Т ) – очень сильная. Поэтому обычно учитывается только зависимость m(Т ). Она, эта зависимость, может быть представлена в виде зависимости Аррениуса или, проще, в виде алгебраического уравнения. Таким образом, возникают так называемые сопряженные задачи.

В последнее время разработаны методы решения многих задач теплоотдачи в ламинарных потоках жидкости с учетом зависимости вязкости жидкости от температуры. Для турбулентных течений все сложнее. Однако можно использовать приближенные численные решения с помощью компьютерных технологий.

Для решения этих уравнений необходимо поставить условия однозначности, которые включают начальные и граничные условия.

Граничные условия теплообмена могут быть заданы различным способом:

Граничные условия первого рода – задаются распределением температуры стенки:

; (19)

простейший случай, когда Т c т = const;

Граничные условия второго рода – задается распределение теплового потока на стенке

; (20)

Граничные условия третьего рода – задается распределение температуры среды, окружающей канал и коэффициент теплоотдачи
от среды к стенке или наоборот

. (21)

Выбор вида граничного условия зависит от условий работы теплообменного оборудования.

На плоской пластине

Рассмотрим поток, обладающий неизменными теплофизическими характеристиками (r, m, l, c p = const), совершающий вынужденное движение вдоль плоской полубесконечной тонкой пластины и обменивающейся с ней теплом. Предположим, что неограниченный поток со скоростью
и температурой Т ° набегает на полубесконечную пластину, совпадающую
с плоскостью х z и имеющую температуру Т ст = const.

Выделим гидродинамический и тепловой пограничные слои
с толщиной d г и d т соответственно (область 99 % изменение скорости w x
и температуры T ). В ядре потока и Т ° постоянны.

Проанализируем уравнения неразрывности и Навье-Стокса. Задача двухмерная, поскольку w z , . По экспериментальным данным известно, что в гидродинамическом пограничном слое . В ядре потока const, поэтому, согласно уравнению Бернулли , в пограничном слое то же самое

.

Как известно «х » d г, поэтому .

Следовательно, имеем

; (22)

. (23)


Записывать аналогичные уравнения для оси у не имеет смысла, так как w y может быть найдена из уравнения неразрывности (22). Используя аналогичные процедуры можно упростить и уравнение Фурье-Кирхгофа

. (24)

Система дифференциальных уравнений (22)–(24) составляет изотермическую математическую модель плоского стационарного теплового ламинарного пограничного слоя. Сформулируем граничные условия
на границе с пластиной, т.е. при у = 0: при любом х скорость w x = 0 (условие прилипания). На границе и вне гидродинамического погранслоя,
т.е. при у ≥ d г (х ), а также при х = 0 для любого у : w x = . Для поля температуры аналогичные рассуждения.

Итак, граничные условия:

w x (x , 0) = 0, x > 0; w x (x , ∞) = ; w x (0, y) = ; (25)

T (x , 0) = T ст, x > 0; T (x , ∞) = T ° ; T (0, y ) = T ° . (26)

Точное решение этой задачи в виде бесконечных рядов было получено Блазиусом. Имеются более простые приближенные решения: метод интегральных соотношений (Юдаев) и теорема импульсов (Шлихтинг). А.И. Разиновым задача была решена методом сопряженного физического
и математического моделирования. Были получены профили скоростей
w x (x , y ), w y (x , y ) и температур Т , а также толщины пограничных слоев
d г (x ) и d т (х )

; (27)

, Pr ≥ 1; (28)

Pr = ν/a.

Коэффициент А в формуле (27) у Разинова – 5,83; Юдаева – 4,64; Блаузиуса – 4; Шлихтинга – 5,0. Примерный вид найденных зависимостей приведен на рис. 1.3.

Как известно, для газов Pr ≈ 1, капельных жидкостей Pr > 1.

Полученные результаты позволяют определить коэффициенты импульса и теплоотдачи. Локальные значения γ(x ) и Nu г,x

, . (29)

y
w x
T ст
(T–T ст)
d г (x )
d т (x )
x

Рис. 1.3. Гидродинамический и тепловой ламинарные пограничные слои

на плоской пластине

Усредненные значения и по участку длиной l

,
, . (30)

Аналогично для теплоотдачи

,
; (31)

, . (32)

В данном случае аналогия тепло- и импульсоотдачи сохраняется (исходные уравнения одинаковы, граничные условия подобны). Критерий, характеризующий гидродинамическую аналогию процесса теплоотдачи имеет вид

P т-г,x = Nu т, x / Nu г, x = Pr 1/3 . (33)

Если Pr = 1, то P т-г,x = 1, следовательно полная аналогия процессов импульсо- и теплоотдачи.

Из полученных уравнений следует

γ ~ , m; a ~ , l. (34)

Как правило, подобная качественная зависимость выполняется
не только для плоского погранслоя, но и для более сложных случаев.

Задача рассматривается в изотермической постановке, тепловые граничные условия первого рода Т ст = const.

По мере удаления от кромки пластины (увеличения координаты х ) происходит рост d г (х ). При этом неоднородность поля скорости w x распространяется в области все более удаленные от границы раздела фаз,
что является предпосылкой возникновения турбулентности. Наконец, при Re x, кp начинается переход ламинарного режима в турбулентный. Переходная зона соответствует значениям х , рассчитанным по Re x от 3,5 × 10 5 ÷ 5 × 10 5 .
На расстояниях Re x > 5 × 10 5 весь пограничный слой турбулизируется,
за исключением вязкого или ламинарного подслоя толщиной d 1г. В ядре потока скорость не меняется. Если Pr > 1 то внутри вязкого подслоя можно выделить тепловой подслой толщиной d 1т, в котором молекулярный перенос тепла преобладает над турбулентным.

Толщина же всего турбулентного теплового пограничного слоя обычно определяется из условия ν т = а т, следовательно d г = d т.

Сначала рассмотрим турбулентный гидродинамический пограничный слой (рис. 1.4). Оставим в силе все приближения, сделанные для ламинарного слоя. Единственное отличие – наличие ν т (у ), поэтому

. (35)

Сохраним и граничные условия. Решением системы уравнений (35)
и (22) с граничными условиями (25), используя полуэмпирическую модель пристенчатой турбулентности Прандтля, можно получить характеристики турбулентного пограничного слоя. В вязком подслое, где реализуется линейный закон распределения скорости, можно пренебречь турбулентным переносом импульса, а вне его молекулярным. В пристенной области
(за вычетом вязкого подслоя) обычно принимается логарифмический профиль скорости, а во внешней области – степенной закон с показателем 1/7 (рис. 1.4).

Рис. 1.4. Гидродинамический и тепловой турбулентные пограничные слои

на плоской пластине

Как и в случае ламинарного пограничного слоя возможно использование осредненных по длине l коэффициентов импульсоотдачи

. (36)

Рассмотрим тепловой турбулентный пограничный слой. Уравнение энергии имеет вид

. (37)

Если Pr > 1, то внутри вязкого подслоя можно выделить тепловой подслой, где молекулярный перенос тепла

. (38)

Для локального коэффициента теплоотдачи решение математической модели имеет вид

Среднее по длине пластины значение определяется так

Ниже представлены образование турбулентного пограничного слоя (а) и распределение локального коэффициента теплоотдачи (б) при продольном обтекании плоской полубесконечной пластины (рис. 1.5).

Рис. 1.5. Пограничные слои d г и d т и локальный коэффициент теплоотдачи a

на плоской пластине

В ламинарном слое (х l кр) тепловой поток только за счет теплопроводности, для качественной оценки можно использовать соотношение a ~ .

В переходной зоне общая толщина пограничного слоя увеличивается. Однако значение a при этом увеличивается, потому что толщина ламинарного подслоя уменьшается, а в образующемся турбулентном слое тепло переносится не только теплопроводностью, но и конвекцией вместе
с перемещающейся массой жидкости, т.е. более интенсивно. В результате суммарное термическое сопротивление теплоотдачи убывает. В зоне развитого турбулентного режима коэффициент теплоотдачи вновь начинает убывать из-за возрастания общей толщины пограничного слоя a ~ .

Итак, рассмотрены гидродинамический и тепловой пограничные слои на плоской пластине. Качественный характер полученных зависимостей справедлив и для пограничных слоев, образующихся при обтекании более сложных поверхностей.

Теплообмен в круглой трубе

Рассмотрим стационарный теплообмен между стенками горизонтальной прямой трубы круглого сечения и потоком, обладающим неизменными теплофизическими характеристиками и движущимся за счет вынужденной конвекции внутри нее. Примем тепловые граничные условия первого рода, т.е. Т ст = const.

I. Участки гидродинамической и термической стабилизации.

При входе жидкости в трубу за счет торможения, вызываемого стенками, на них формируется гидродинамический пограничный слой.
По мере удаления от входа толщина пограничного слоя возрастает,
пока пограничные слои, прилегающие к противоположенным стенам,
не сомкнутся. Этот участок называется начальным или участком гидродинамической стабилизации – l нг.

Подобно изменению профиля скоростей по длине трубы изменяется
и профиль температур.

II. Рассмотрим ламинарное движение жидкости.

Ранее, в разделе дисциплины «Гидродинамика и гидродинамические процессы» , нами был рассмотрен гидродинамический начальный участок. Для определения длины начального участка была предложена следующая зависимость

.

Для жидкости Pr > 1, следовательно, тепловой пограничный слой будет находиться внутри гидродинамического пограничного слоя.
Это обстоятельство позволяет считать, что тепловой пограничный слой развивается в стабилизированном гидродинамическом участке и профиль скорости известен – параболический.

Температура жидкости во входном сечении теплообменного участка постоянна по сечению и равна Т ° и в ядре потока она не меняется. При этих условиях уравнение теплового пограничного слоя имеет вид

. (41)

Решение этого уравнения при вышеперечисленных условиях дает:

· для длины теплового начального участка

; (42)

· для местного коэффициента теплоотдачи

; (43)

· для среднего коэффициента теплоотдачи длиной

; (44)

· для местного числа Нуссельта

; (45)

· для среднего числа Нуссельта

. (46)

Рассмотрим уравнение (42). Если , то .
Для жидкостей Pr > 1, поэтому в большинстве случаев, особенно
для жидкостей с большим Pr , теплообмен при ламинарном режиме движения осуществляется в основном на участке термической стабилизации. Как видно из соотношения (43) a для трубы на участке термической стабилизации уменьшается по мере удаления от входа (увеличивается толщина теплового пограничного слоя d т) (рис. 1.6).

Рис. 1.6. Профиль температуры на начальном и стабилизированном участке

при ламинарном течении жидкости в цилиндрической трубе

При турбулентном течении потока в трубе, как и на плоской пластине, во-первых, толщины гидродинамического и теплового пограничных слоев совпадают; а во-вторых, растут значительно быстрее, чем для ламинарных. Это приводит к уменьшению длины участков термической
и гидродинамической стабилизации, что позволяет в большинстве случаев пренебрегать ими при расчете теплоотдачи

. (47)

III. Стабилизированный теплообмен при ламинарном движении среды.

Рассмотрим стационарный теплообмен в круглой трубе, когда теплофизические свойства жидкости постоянны (изотермический случай), профиль скорости не меняется по длине, температура стенки трубы постоянна и равна Т ст, в потоке отсутствуют внутренние источники тепла,
а количество тепла, выделяющееся вследствие диссипации энергии, пренебрежимо мало. При этих условиях уравнение теплообмена имеет такой же вид, что для пограничного слоя. Следовательно, исходным уравнением для изучения теплообмена является уравнение (41).

Граничные условия:

(48)

Решение этой задачи впервые было получено Гретцем, затем Нуссельтом, в виде суммы бесконечного ряда. Несколько иное решение было получено Шумиловым и Яблонским. Полученное решение справедливо
и для участка термической стабилизации при условии предварительной гидродинамической стабилизации потока.

Для области стабилизированного теплообмена локальный коэффициент теплоотдачи равен предельному

или (49)

Как видно из рисунка (рис. 1.7), с увеличением число Nu уменьшается, асимптотически приближаясь на втором участке кривой
к постоянному значению Nu = 3,66. Это происходит, потому что для стабилизированного теплообмена профиль температуры по длине трубы
не меняется. На первом участке происходит формирование профиля температуры. Первый участок соответствует термическому начальному участку.

10 –5 10 –4 10 –3 10 –2 10 –1 10 0
1
3,66
Nu
Nu

Рис. 1.7. Изменение местного и среднего Nu по длине круглой трубы при Т ст = const

IV. Стабилизированный теплообмен при турбулентном движении среды.

Исходное уравнение

. (50)

Граничные условия:

(51)

При решении задачи возникает проблема выбора профиля скорости w x . Одни для w x используют логарифмический закон (А.И. Разинов), другие – закон 1/7 (В.Б. Коган). Отмечается консервативность турбулентных течений, которая заключается в слабом влиянии граничных условий и поля скорости w x на коэффициенты теплоотдачи.

Для числа Нуссельта предлагается следующая формула

. (52)

Как и для ламинарного движения в области стабилизированного теплообмена при турбулентном течении среды Nu не зависит от координаты х .

Нами был рассмотрены выше частные случаи теплообмена, а именно: при изотермической постановке задачи и тепловых граничных условиях первого рода теплообмен в гладких цилиндрических трубах и плоских горизонтальных пластинах.

В литературе имеются решения тепловых задач и для других случаев. Отметим, что шероховатость поверхности трубы и пластины ведет
к увеличению коэффициента теплоотдачи.

Подвод теплоты

Для решения этой задачи применяют различные теплоносители.
ТН классифицируются по:

1. По назначению:

Греющий ТН;

Охлаждающий ТН, хладаноситель;

Промежуточный ТН;

Сушильный агент.

2. По агрегатному состоянию:

· Однофазные :

Низкотемпературная плазма;

Неконденсирующиеся пары;

Не кипящие и неиспаряющиеся при данном давлении жидкости;

Растворы;

Зернистые материалы.

· Много-, двухфазные :

Кипящие, испаряющиеся и распыляемые газом жидкости;

Конденсирующиеся пары;

Плавящиеся, затвердевающие материалы;

Пены, газовзвеси;

Аэрозоли;

Эмульсии, суспензии и т.д.

3. По диапазону температур и давления:

Высокотемпературные ТН (дымовые, топочные газы, расплавы солей, жидкие металлы);

Среднетемпературные ТН (водяной пар, вода, воздух);

Низкотемпературные ТН (при атмосферном давлении T кип ≤ 0 °C);

криогенные(сжиженные газы – кислород, водород, азот, воздух и др.) .

С увеличением давления растет и температура кипения жидкостей.

В качестве прямых источников тепловой энергии на промышленных предприятиях используют топочные (дымовые) газы и электроэнергию. Вещества, передающие от этих источников теплоту, в ТО называют промежуточными ТН. Наиболее распространенные промежуточные ТН:

Водяной пар насыщенный;

Горячая вода;

Перегретая вода;

Органические жидкости и их пары;

Минеральные масла, жидкие металлы.

Требования к ТН:

Большая r, с р ;

Высокое значение теплоты парообразования;

Низкая вязкость;

Негорючесть, нетоксичность, термостойкость;

Дешевизна.

Отвод теплоты

Многие процессы промышленной технологии протекают в условиях, когда возникает необходимость отвода теплоты, например, при охлаждении газов, жидкостей или при конденсации паров.

Рассмотрим некоторые способы охлаждения.

Охлаждение водой и низкотемпературными жидкими хладагентами.

Охлаждение водой используют для охлаждения среды до 10–30 °С. Речная, прудовая и озерная вода в зависимости от времени года имеет температуру 4–25 °С, артезианская – 8–12 °С, а оборотная (летом) – около 30 °С.

Расход охлаждающей воды определяют из уравнения теплового баланса

. (83)

Здесь – расход охлаждаемого теплоносителя; Н н и Н к – начальная
и конечная энтальпии охлаждаемого теплоносителя; Н нв и Н кв – начальная
и конечная энтальпии охлаждающей воды; – потери в окружающую среду.

Достижение более низких температур охлаждения можно обеспечить
с помощью низкотемпературных жидких хладагентов.

Охлаждение воздухом . Наиболее широко воздух в качестве охлаждающего агента используют в смесительных теплообменниках – градирнях, являющихся основным элементом оборудования водооборотного цикла (рис. 2.5).

Рис. 2.5. Градирни с естественной (а) и принудительной (б) тягой

Горячая вода в градирне охлаждается как за счет контакта с холодным воздухом, так и в результате так называемого испарительного охлаждения,
в процессе испарения части потока воды.

Смесительные теплообменники

В смесительных теплообменниках (СТО) передача тепла от одного теплоносителя к другому происходит при их непосредственном соприкосновении или смешении, следовательно, термическое сопротивление стенки (разделяющей теплоносители) отсутствует. Наиболее часто СТО применяют для конденсации паров, нагревания и охлаждения воды и паров. По принципу устройства СТО подразделяют на барботажные, полочные, насадочные и полые (с разбрызгиванием жидкости) (рис. 2.18).

пар
вода
в
воздух
вода
вода
вода
пар
г
пар
нагретая жидкость
а
воздух
вода
пар
вода + конденсат
б
жидкость

Рис. 2.18. Схемы СТО: а) барботажный смесительный теплообменник для нагрева воды;

б) насадочный теплообменник-конденсатор; в) полочный барометрический конденсатор; г) полый

ЧАСТЬ 3. ВЫПАРИВАНИЕ

Выпаривание – процесс концентрирования растворов твердых нелетучих веществ путем удаления летучего растворителя в виде паров. Выпаривание обычно проводится при кипении. Обычно из раствора удаляется только часть растворителя, так как вещество должно оставаться
в текучем состоянии.

Существует три метода выпаривания:

Поверхностное выпаривание осуществляется путем нагревания раствора на теплообменной поверхности за счет подвода тепла к раствору через стенку от греющего пара;

Адиабатическое выпаривание, которое происходит путем мгновенного испарения раствора в камере, где давление ниже, чем давление насыщенного пара;

Выпаривание путем контактного испарения - нагревание раствора осуществляется при прямом контакте между движущимся раствором
и горячим теплоносителем (газом или жидкостью).

В промышленной технологии в основном применяется первый метод выпаривания. Далее о первом методе. Для осуществления процесса выпаривания необходимо теплоту от теплоносителя передать кипящему раствору, что возможно лишь при наличии разности температур между ними. Разность температур между теплоносителем и кипящим раствором называют полезной разностью температур.

В качестве теплоносителя в выпарных аппаратах применяется насыщенный водяной пар (греющий или первичный). Выпаривание – типичный теплообменный процесс – перенос теплоты за счет конденсации насыщенного водяного пара к кипящему раствору.

В отличие от обычных теплообменников выпарные аппараты состоят из двух основных узлов: греющей камеры или кипятильника и сепаратора. Сепаратор предназначен для улавливания капель раствора из пара, который образуется при кипении. Этот пар называется вторичным или соковым. Температура вторичного пара всегда меньше температуры кипения раствора. Для поддержания постоянного вакуума в конденсаторе необходимо отсасывать парогазовую смесь вакуум-насосом.

В зависимости от давления вторичного пара различают выпаривание при р атм, р изб, р вак. В случае выпаривания при р вак снижается температура кипения раствора, при p изб – вторичный пар используется в технологических целях. Температура кипения раствора всегда выше температуры кипения чистого растворителя. Например, для насыщенного водного раствора
NaCl (26 %) T кип = 110 °С, для воды T кип = 100 °С. Вторичный пар, отбираемый из выпарной установки для других нужд, называется экстра паром .

Температурные потери

Обычно в однокорпусных выпарных установках известны давления греющего и вторичного паров, т.е. их температуры. Разность между температурами греющего и вторичного паров называют общей разностью температур выпарных аппаратов

. (96)

Общая разность температур связана с полезной разностью температур соотношением

Здесь D¢ - концентрационная температурная депрессия; D¢¢ - гидростатическая температурная депрессия; D¢ определяют как разницу температур кипения раствора Т кип. р и чистого растворителя Т кип. чр при p = = const

D¢ = Т кип. р – Т кип. чр, Т кип. чр, D¢ = Т кип. р - T вп. (98)

Температура образующегося при кипении раствора вторичных паров ниже, чем температура кипения самого раствора, т.е. часть температур теряется бесполезно; D¢¢ характеризует повышение температуры кипения раствора с увеличением гидростатического давления. Обычно по высоте кипятильных труб определяют среднее давление, и для этого давления определяют среднюю температуру кипения растворителя Т ср.

Здесь p a - давление в аппарате; r пж - плотность парожидкостной смеси
в кипятильных трубах ; H - высота кипятильных труб.

D² = T ср - T вп, (99)

где T ср - температура кипения растворителя при p = p ср; T вп - температура вторичного пара при давлении p а.

Многокорпусное выпаривание

В многокорпусной выпарной установке вторичный пар (рис. 3.2, 3.3) предыдущего корпуса используется в качестве греющего пара
в последующем корпусе. Такая организация выпаривания приводит
к значительной экономии греющего пара. Если принять по всем корпусам, то общий расход греющего пара на процесс уменьшается пропорционально числу корпусов. Практически, в реальных условиях такое соотношение не выдерживается, оно, как правило, выше. Далее рассмотрим уравнения материальных и тепловых балансов для многокорпусной выпарной установки (см. рис. 3.2), которые представляют собой систему уравнений, записанных для каждого корпуса в отдельности.

Осуществляется вследствие соударения молекул, электронов и агрегатов элементарных частиц друг с другом. (Теплота переходит от более нагретого тела к менее нагретому). Или в металах: постепенная передача колебаний кристаллической решётки от одной частицы к другой (упругие колебания частиц решётки – фононная теплопроводность).

Конвективный перенос;

Этот перенос связан с движением частиц флюидов и обусловлен перемещением микроскопических элементов веществ, его осуществляет свободное или вынужденное движение теплоносителя.

Под воздействием градиента температуры в земной коре возникают конвективные потоки не только тепла, но и вещества. Возникает термогидродинамический градиент давления.


Можно наблюдать и такое явление, что при возникновении гидродинамического градиента давления нефть удерживается в пласте без покрышки.

3. Теплообмен, связанный с излучением .

Радиоактивная единица в результате распада выделяет тепло, и это тепло выделяется вследствии излучения.

33. Тепловые свойства нефтегазового пласта, характеристика и область использования .

Тепловыми свойствами являются:

1) Коэффициент теплоёмкости с

2) Коэффициент теплопроводности l

3) Коэффициент температуроппроводности а

1. Теплоёмкость:

с – количество теплоты, необходимое для повышения температуры вещества на один градус при заданных условиях (V, Р=соnst).

с=dQ/dТ

Средняя теплоёмкость вещества: с=DQ/DТ.

Т.к. образцы породы могут иметь разную массу, объём, то для более дифференцированной оценки вводятся специальные виды теплоёмкости: массовая, объёмная и молярная.

· Удельная массовая теплоёмкость [Дж/(кг×град)]:

С m =dQ/dТ=С/m

Это количество теплоты, необходимое для изменения на один градус единицы массы образца.

· Удельная объёмная теплоёмкость [Дж/(м 3 ×К)]:

С v =dQ/(V×dТ)=r×С m ,

где r - плотность

Количество теплоты, которое необходимо сообщить единице для повышения её на один градус, в случае Р, V=соnst.

· Удельная молярная теплоёмкость [Дж/(моль×К)]:

С n =dQ/(n×dТ)=М×С m ,

где М – относительная молекулярная масса [кг/кмоль]

Количество теплоты, которое надо сообщить молю вещества для изменения его температуры на один градус.

Теплоёмкость является аддитивным свойством пласта:

С i = j=1 N SС j ×К i , где SК i =1, К – количество фаз.

Теплоёмкость зависит от пористости пласта: чем больше пористость, тем меньше теплоёмкость.

(с×r)=с ск ×r ск ×(1-k п)+с з ×r з ×k п,

где с з – коэффициент заполнения пор;

k п – коэффициент пористости.

Теплопроводность.

l [Вт/(м×К)] характеризует свойство породы передавать кинетическую (или тепловую) энергию от одного элемента к другому.

Коэффициент теплопроводности – количество тепла, проходящее за единицу времени через кубический объём вещества с гранью единичного размера, при этом на других гранях поддерживается разница температур в один градус (DТ=1°).

Коэффициент теплопроводности зависит от:

ü минерального состава скелета. Разброс значений коэффициентов может достигать десяти тысяч раз.

Например, самый большой l у алмаза – 200 Вт/(м×К), т.к. у его кристалла практически отсутствуют структурные дефекты. Для сравнения, l воздуха составляет 0,023 Вт/(м×К), воды – 0,58 Вт/(м×К).

ü степени наполненности скелета.

ü Теплопроводности флюидов.

Существует такой параметр, как контактный коэффициент теплопроводности .

Наибольшим из контактных коэффициентов обладает кварц – 7-12 Вт/(м×К). Далее идут гидрохимические осадки, каменная соль, сильвин, ангидрит.

Пониженный контактный коэффициент имеют уголь и асбест.

Аддитивность для коэффициента теплопроводности не соблюдается, зависимость не подчиняется правилу аддитивности.

Например, теплопроводность минералов может быть записана следующим образом:

1gl=Sv i ×1gl i ,

где 1gl i – логарифм l i-ой фазы с объёмным содержанием v i .

Важным свойством является величина обратная теплопроводности, именуемая тепловым сопротивлением.

Вследствие теплового сопротивления, мы имеем сложное распределение тепловых полей. Это приводит к тепловой конвекции, благодаря которой могут образовываться особые типы залежей – не обычная покрышка, а термодинамическая.

Термодинамическое сопротивление снижается со снижением плотности, проницаемости, влажности, а также (в северных районах) степени льдистости.

Повышается оно при замещении воды нефтью, газом или воздухом в процессе теплового изменения давления, с увеличением слоистой неоднородности, явления анизотропии.

Наибольшим тепловым сопротивлением обладают угли, сухие и газонасыщенные породы.

При переходе от терригенных пород к карбонатным тепловое сопротивление снижается.

Минимальным тепловым сопротивлением обладают гидрохимические осадки, такие как галит, сильвин, мирабелит, ангидрит, т.е. породы, обладающие структурой пластинчатой соли.

Глинистые пласты, среди всех пластов, выделяются максимальным тепловым сопротивлением.

Из всего этого мы можем заключить, что тепловое сопротивление определяет степени тепловой инерции, тепловой проводимости.

Температуропроводность.

На практике часто используется такой коэффициент, как температуропроводность , который характеризует скорость изменения температуры при нестационарном процессе теплопередачи.

а=l/(с×r), когда l=соnst.

На самом деле «а» не является постоянной, т.к. l является функцией координат и температуры, а с – коэффициента пористости, массы и т.д.

При разработке мы можем использовать процессы, в которых возможно возникновение внутреннего источника тепла (например, закачка кислоты), в таком случае уравнение будет выглядеть так:

dТ/dt=а×Ñ 2 Т+Q/(с×r),

где Q – теплота внутреннего источника тепла, r - плотность породы.

Теплопередача.

Следующим важным параметром является теплопередача.

DQ=k т ×DТ×DS×Dt,

где k т – коэффициент теплопередачи.

Его физический смысл: количество тепла, ушедшего в соседние пласты, через единицу поверхности, в единицу времени при изменении температуры на один градус.

Обычно теплопередача связана с вытеснением в выше и ниже лежащие пласты.

34. Влияние температуры на изменение физических свойств нефтегазового пласта.

Тепло, которое поглощается породой, расходуется не только на кинетические тепловые процессы, но и на совершение механической работы, она связана с тепловым расширением пласта. Это тепловое расширение связано с зависимостью сил связи атомов в решётке отдельных фаз от температуры, в частности появляющаяся в направленности связей. Если атомы легче смещаются при удалении друг от друга, чем при сближении, происходит смещение центров колющихся атомов, т.е. деформация.

Связь между ростом температуры и линейной деформацией может быть записана:

dL=a×L×dТ ,

где L – первоначальная длина [м], a - коэффициент линейного теплового расширения .

Аналогично для объёмного расширения:

dV/V=g т ×dТ,

где g т – коэффициент объёмной тепловой деформации.

Поскольку коэффициенты объёмного расширения сильно различаются для разных зёрен, то в процессе воздействия произойдут неравномерные деформации, что приведёт к разрушению пласта.

В точках соприкосновения происходит сильная концентрация напряжений, следствием чего является вынос песка и соответственно разрушение породы.

Явление вытеснения нефти и газа также связано с объёмным расширением . Это так называемый процесс Джоуля-Томпсона. При эксплуатации происходит резкое изменение объёма, возникает эффект дросселирования (теплового расширения с изменением температуры). Термодинамическая дебитометрия основана на изучении этого эффекта.

Введём ещё один параметр – адиабатический коэффициент : h s =dТ/dр.

Дифференциальный адиабатический коэффициент определяет изменение температуры в зависимости от изменения давления.

Величина h S >0 при адиабатическом сжатии. При этом вещество нагревается. Исключением является вода, т.к. в интервале от 0¼4° она остывает.

h S =V/(С р ×g)×a×Т,

где V – объём, Т – температура, a - коэффициент линейного расширения, g – ускорение свободного падения.

Коэффициент Джоуля-Томпсона определяет изменение температуры при дросселировании.

e=dТ/dр=V/(С р ×g)×(1 - a×Т)=V/(С р ×g) - h S ,

где V/(Ср×g) определяет нагрев за счёт работы сил трения

h S – охлаждение вещества за счёт адиабатического расширения.

Для жидкости V/Ср×g>>hS Þ Жидкости нагреваются.

Для газов e<0 Þ Газы охлаждаются.

На практике используют шумометрию скважин – метод, основанный на явлении, когда газ при изменении температуры выделяет колебательную энергию, вызывая шум.

35. Изменение свойств нефтегазового пласта в процессе разработки залежи.

1. В естественном состоянии пласты находятся на большой глубине, а, судя по геотермическим ступеням, температура в этих условиях близка к 150°, поэтому можно утверждать, что породы изменяют свои свойства, ведь при проникновении в пласт мы нарушаем тепловое равновесие .

2. Когда мы закачиваем в пласт воду , эта вода имеет температуру поверхности. Попадая в пласт, вода начинает охлаждать пласт, что неминуемо приведёт к различным неблагоприятным явлениям, например парафинизации нефти. Т.е. если в нефти есть парафинистая составляющая, то в результате охлаждения выпадет парафин и закупорит пласт. К примеру, на месторождении Узень температура насыщения нефти парафином Тн=35°(40°), и при его разработки были нарушены эти условия, в результате температура пласта снизилась, парафин выпал, произошла закупорка и разработчикам пришлось длительное время закачивать горячую воду и прогревать пласт, пока весь парафин не растворился в нефти.


3. Высоковязкие нефти.

Для их разжижения используют теплоноситель: горячую воду, перегретый пар, а также внутренние источники тепла. Так в качестве источника используют фронт горения: поджигают нефть и подают окислитель.

В Швейцарии, Франции, Австрии, Италии реализуют и такие проекты:

Метод снижения вязкости нефтей посредством радиоактивных отходов. Они хранятся 10 6 лет, но при этом греют высоковязкую нефть, позволяя легче её добывать.

36. Физическое состояние углеводородных систем в нефтегазовых пластах и характеристики этих состояний.

Возьмём простое вещество и рассмотрим диаграмму состояния:

Р

Точка С является критической точкой, в которой различие между свойствами исчезает.

Давление (Р) и температура (Т), которые характеризуют пласт, могут измеряться в очень широком диапазоне: от десятых МПа до десятков МПа и от 20-40° до более, чем 150°С. В зависимости от этого наши залежи, в которых находятся углеводороды, могут быть разделены на газовые, нефтяные и т. д.

Т.к. на различных глубинах давления меняются от нормальных геостатических до аномально высоких, то углеводородные соединения могут находиться в газообразном, жидком или в виде газожидкостных смесей в залежи.

При высоких давлениях плотность газов приближается к плотности лёгких углеводородных жидкостей. В этих условиях тяжёлые нефтяные фракции могут растворяться в сжатом газе. В результате нефть будет частично растворена в газе. Если количество газа незначительно, то с ростом давления газ растворяется в нефти. Поэтому в зависимости от количества газа и его состояния выделяются залежи:

1. чисто газовые;

2. газоконденсатные;

3. газонефтяные;

4. нефтяные с содержанием растворённого газа.

Граница между газонефтяными и нефтегазовыми залежами условна. Она сложилась исторически, в связи с существованием двух министерств: нефтяной и газовой промышленности.

В США залежи углеводородов делятся по значению газоконденсатного фактора, плотности и цвету жидких углеводородов на:

1) газовые;

2) газоконденсатные;

3) газонефтяные.

Газоконденсатный фактор – это количество газа в кубических метрах, приходящееся на кубометр жидкой продукции.

По американскому стандарту к газоконденсатам относятся залежи, из которых добываются слабоокрашенные или бесцветные углеводородные жидкости с плотностью равной 740-780 кг/м 3 и с газоконденсатным фактором 900-1100 м 3 /м 3 .

В газовых залежах может содержаться адсорбированная связанная нефть, состоящая из тяжёлых углеводородных фракций, составляющая до 30% порового объёма.

Кроме того при определённых давлениях и температурах возможно существование газогидратных залежей, где газ находится в твёрдом состоянии. Наличие таких залежей – большой резерв наращивания добычи газа.

В процессе разработки происходит изменение первоначальных давлений и температур и происходят техногенные преобразования углеводородов в залежи.

Как то из нефти при непрерывной системе разработки может выделится газ, в результате чего у нас произойдёт снижение фазовой проницаемости, увеличение вязкости, в призабойной зоне происходит резкое снижение давления, за которым последует выпадение конденсата, что приведёт к образованию конденсатных пробок.

Кроме того, при транспортировке газа могут происходить фазовые преобразования газа.

38. Фазовые диаграммы однокомпонентных и многокомпонентных систем.

Правило фаз Гипса (показывает вариантность системы – число степеней свободы)

N - число компонентов системы

m – число ее фаз.

Пример: H 2 O (1 комп.) N=1 m=2 Þ r=1

При заланном Р одна только Т

Однокомпонентная систеиа.

Сжимаем от А к В – первая капля жидкости (точка росы или точка конденсации Р=Р нас)

В точке Д остаётся последний пузырек пара, точка парообразования или кипения

У каждой изотермы свои точки кипения и парообразования.

Двухкомпонентная система

Изменяется Р и Т , т. е. давление начала конденсации всегда меньше давления парообразования.


Похожая информация.


Теплообмен кондуктивный (лат. conduce, conductum сводить, соединять) Т. путем проведения тепла к (или от) поверхности какого-либо твердого тела, соприкасающегося с поверхностью тела.

Большой медицинский словарь . 2000 .

Смотреть что такое "теплообмен кондуктивный" в других словарях:

    Теплообмен, обусловленный совместным переносом теплоты излучением и теплопроводностью … Политехнический терминологический толковый словарь

    радиационно-кондуктивный теплообмен - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN heat transfer by radiation and conduction … Справочник технического переводчика

    Сфера Вернона шаровой термометр представляет собой полую, тонкостенную, металлическую (из латуни или алюминия) сферу диаметром 0,1 0,15 м. Наружная поверхность сферы зачернена так, что она поглощает ε ≈ 95 % теплового… … Википедия

    Тепловые свойства материалов - Термины рубрики: Тепловые свойства материалов Влажностное состояние ограждающей конструкции Влажность эксплуатационная … Энциклопедия терминов, определений и пояснений строительных материалов

    - (a. survival suit, protective gear; н. Schutzanzug, Schutzkleidung; ф. costume de protection; и. traje protector) в горной промышленности специальная одежда для защиты от вредного воздействия среды горноспасателей, пожарных, др.… … Геологическая энциклопедия

Книги

  • Теплообмен и тепловые испытания материалов и конструкций аэрокосмической техники при радиационном нагреве , Виктор Елисеев. Монография посвящена проблемам теплообмена и тепловых испытаний материалов и конструкций аэрокосмической техники c использованием источников высокоинтенсивного излучения. Приведены результаты…