Особенности энергетического спектра для изолированных атомов. Зонная теория. И технология электронных средств


Одна из основных задач теории твердого тела заключается в определении энергетического спектра и стационарных состояний электронов в кристалле. Качественное представление об этом спектре можно получить, используя приближенные методы и упрощения. Во-первых, считается, что подсистема ядер практически покоится (относительно быстрого движения электронов) – адиабатическое приближение. Во-вторых, предполагается, что каждый электрон движется в поле, созданном другими электронами и независящем от мгновенного положения данного электрона, что позволяет рассматривать движение каждого электрона независимо от всех остальных и описывать его одноэлектронным уравнением Шредингера.

Такое приближение называется одноэлектронным.

Приближение сильносвязанных электронов . В изолированном атоме электроны способны занимать лишь дискретные энергетические уровни, которые разделены интервалами запрещенных энергий. При этом электроны стремятся занять наиболее низкие уровни, но при условии, что на каждом уровне находится не более двух электронов (принцип Паули).

При образовании кристалла благодаря сближению N одинаковых атомов между ними возникают силы взаимодействия: силы отталкивания между ядрами и между электронами соседних атомов и силы протяжения между всеми ядрами и всеми электронами.

Приближение сильносвязанных электронов основано на представлении о том, что обобщенные электроны сохраняют достаточно сильную связь с атомами, и их потенциальную энергию можно представить в следующем виде.

, (4.20)

где Ua – потенциальная энергия электрона в изолированном атоме. Для кристалла она является периодической функцией с периодом, равным параметру решетки, так как энергия электрона повторяется при переходе его от одного атома к другому;
представляет собой поправочный член, учитывающий влияние соседних атомов на эту энергию.

Если в (4.20) пренебречь поправочным членом
,т.е. рассматривать так называемоенулевое приближение , то в качестве волновой функции и энергии электрона в кристалле следует взять волновую функцию и энергию Е а электрона в изолированном атоме:
,
.

Различие между кристаллом и отдельным атомом состоит в этом случае в следующем. В то время как в изолированном атоме данный энергетический уровень Е а является единственным, в кристалле, состоящем из N атомов, он повторяется N раз. Иначе говоря, каждый уровень изолированного атома в кристалле оказывается N -кратно вырожденным .

Учтем теперь поправочный член
в потенциальной энергии (4.20). По мере сближения изолированных атомов и образования из них решетки каждый атом попадает во все возрастающее поле своих соседей, с которыми он взаимодействует.

В поле этих сил вырождение уровней атомов снимается. Поэтому каждый энергетический уровень , не вырожденный в изолированном атоме, расщепляется на N близко расположенных друг от друга подуровней, образующих энергетическую зону . Эта зона состоит из очень близко расположенных энергетических уровней, плотность которых возрастает по мере удаления от краев зоны по параболическому закону, достигая максимума в середине зоны. По мере сближения атомов сначала расщепляются самые высокие энергетические уровни, затем по мере сближения атомов – более низкие.

Механизм образования энергетических зон показан на рис.4.3.

Рис. 4.3. Схема образования энергетических зон в кристалле

Если энергетический уровень имел в атоме (2 l +1) –кратное вырождение, то соответствующая ему энергетическая зона будет состоять из N (2 l +1) подуровней. Так, уровень s дает зону s , состоящую из N подуровней и способную вместить 2 N электронов: уровень р дает зону р, состоящую из 3 N подуровней и способную вместить 6N электронов, и т.д.

Так как в кристалле объемом 1 м 3 содержится примерно 10 28 атомов, а ширина энергетической зоны порядка 1 эВ, расстояние между энергетическими уровнями в зоне составляет около 10 –28 эВ. Поэтому достаточно ничтожно малого энергетического воздействия, чтобы вызвать переход электронов с одного уровня на другой внутри зоны; можно считать, что энергетические зоны являются квазинепрерывными.

На различные уровни атома влияние поля решетки не одинаково. Уровни внутренних электронов, сильно взаимодействующих с ядром, испытывают настолько слабое расщепление, что им можно пренебречь: по мере же перехода ко всем более внешним электронам энергия взаимодействия их с ядром уменьшается, и влияние внешнего поля увеличивается. Наиболее сильное изменение под влиянием поля претерпевают уровни внешних валентных электронов, сравнительно слабо связанных с ядром, а энергетические зоны , образованные из энергетических уровней этих электронов, оказываются наиболее широкими . Об этом свидетельствует и характер электронных облаков валентных электронов: они перекрываются настолько сильно, что создают результирующее облако практически равномерной плотности. Это соответствует состоянию полного их обобществления в решетке. Такие обобществленные электроны называют обычно свободными , а их совокупность – электронным газом .

Внутренние же электроны, сильно связанные с ядром, испытывают лишь незначительное возмущение от соседних атомов, вследствие чего их энергетические уровни в кристалле остаются практически столь же узкими, как и в изолированных атомах.

Таким образом, каждому энергетическому уровню изолированного атома в кристалле соответствует зона разрешенных энергий : уровню 1s – зона 1s , уровню 2р – зона 2р и т.д. Зоны разрешенных энергий разделены областями запрещенных энергий – запрещенными зонами Е g . С увеличением энергии электрона в атоме ширина разрешенных зон увеличивается, ширина запрещенных – уменьшается.

Во многих случаях может иметь место перекрытие разрешенных зон. Подобно энергетическим уровням в изолированных атомах энергетические зоны могут быть полностью заполненными электронами, частично заполненными и свободными. Все зависит от структуры электронных оболочек изолированных атомов и межатомных расстояний в кристалле. Самую верхнюю из зон, частично или полностью заполненную электронами, называют валентной зоной , а ближайшую к ней незаполненную зону – зоной проводимости .

Приближение свободных электронов . Рассмотрим случай движения совершенно свободного электрона вдоль оси Х, описываемого следующим уравнением Шреденгера :

, (4.21)

, (4.22)

так как свободный электрон обладает кинетической энергией.

Формула (4.22) и представляет собой дисперсионное соотношение для свободных электронов , выражающее зависимость Е(р). Его можно преобразовать следующим образом. Согласно формуле Луи де Бройля,

, (4.23)

где λ – длина электронной волны, а

. (4.24)

Вектор k, по направлению совпадающий с направлением распространения электронной волны, а по величине равный 2π/λ, называется волновым вектором электрона. Подставляя р из (4.23) в (4.22) получим

. (4.25)

Из (4.22) и (4.24) видно, что для свободных электронов закон дисперсии имеет квадратичный характер и для одномерного движения электрона выражается квадратной параболой, показанной на рис.4.4.

Решением уравнения (4.21) является плоская бегущая волна:

, (4.26)

где А – амплитуда волны.

Рис.4.4. Закон дисперсии для свободного электрона

Квадрат модуля волновой функции пропорционален, как известно, вероятности обнаружения электрона в той или иной области пространства. Как видно из (4.26), для свободного электрона эта вероятность не зависит от координаты электрона, так как

Это означает, что для свободного электрона все точки пространства эквивалентны и вероятность нахождения его в любой из них одинакова.

Приближение слабосвязанных электронов . Обратимся к случаю движения электрона в периодическом поле кристалла, образованном правильно расположенными ионами решетки (рис.4.5).

Рис.4.5.Вероятность обнаружения электрона при движении в поле правильно расположенных ионов

В этом приближении потенциальная энергия электрона представляется в виде

;
, (4.28)

где U 0 (x ) – потенциальная энергия электрона в поле положительных ионов в предположении, что это поле компенсировано полем всех остальных электронов;

U 0 (x ) - периодическая функция с периодом, равным постоянной решетки;

- учитывает неполную локальную компенсацию поля ионов электронами. Вероятность обнаружения электрона в данном месте кристалла должна быть периодической функцией координаты х, так как положения, отличающиеся друг от друга на величину, кратную постоянной решетки а (например, положения А, А’ и В на рис.4.5) для электрона является одинаково вероятными. Различными будут только положения в пределах, одного периода а (например, в пределах периода АСА’). Это означает, что амплитуда волновой функции
электрона, движущегося в периодическом поле, не остается постоянной, как у свободного электрона, а периодически меняется, или, как говорят, модулирована с периодом, равным периоду решетки а. Обозначим эту амплитуду через u(x). Тогда волновую функцию для электрона, движущегося в периодическом поле кристалла в направлении оси х, можно представить в следующем виде :

, (4.29)

при этом u(x+na)=u(x), где n – любое целое число. Соотношение (4.29) называют функцией Блоха . Конкретный вид этой функции определяется видом потенциальной энергии U(х), входящей в уравнение Шредингера (4.9).

Соответственно должно измениться и дисперсионное соотношение для электронов, движущихся в периодическом поле кристалла по сравнению со свободными электронами. Во-первых, энергетический спектр таких электронов приобретает зонный характер. Внутри каждой зоны энергия электрона оказывается периодической функцией волнового вектора k и для одномерного кристалла (атомной цепочки) с параметром а может быть выражена следующим соотношением:

где Е а – энергия атомного уровня, из которого образовалась зона; С – сдвиг этого уровня под действием поля соседних атомов; А – так называемый обменный интеграл , учитывающий появившуюся у электронов кристалла возможность перехода от атома к атому вследствие перекрытия их волновых функций. Он тем больше, чем сильнее перекрываются волновые функции, т.е. с чем большей частотой могут обмениваться соседние атомы своими электронами. Для s-состояний А s <0 , для р-состояний А p >0 , поэтому целесообразно соотношение (4.30) записать отдельно для s- и р-зон:

для р-зон

где
;
;,- абсолютное значение обменных интегралов для этих состояний.

На рис. 4.6. показаны дисперсионные кривые Е(k ) для s- и р-зон, построение по уравнениям (4.31) и (4.32).

Для s-состояний Е s при k =0 принимает минимальное значение
. С увеличениемk уменьшается coska и
растет, достигая максимального значения
при
.

Рис.4.6. Зависимость Е(k ) в представлении приведенных зон

Точно так же меняется Е s (k ) при изменении k от 0 до – π/а . Ширина разрешенной s-зоны, простирающейся от Е s мин до Е s макс , равна

Для р-состояний
находится при
, а
приk=0. Ширина р-зоны

по-прежнему определяется величиной обменного интеграла А р. Как правило, чем выше располагается атомный уровень, тем сильнее перекрываются волновые функции электронов этого уровня в кристалле, тем больше обменный интеграл, тем шире энергетическая зона, образовавшаяся из данного уровня. Поэтому из высоких атомных уровней образуются широкие энергетические зоны, разделенные узкими запрещенными зонами (см.рис.4.3).

Области значений волнового вектора k , в пределах которых энергия Е(k ) электрона, как периодическая функция k, испытывает полный цикл своего изменения, называют зонами Бриллюэна. Для одномерного кристалла (атомной цепочки) первая зона Бриллюэна простирается от
до
и имеет протяженность
(рис.4.6), два отрезка от
до
и от
до
представляют собой вторую зону Бриллюэна и т.д. При значениях
, где
энергия претерпевает разрыв, приводящей к образованию запрещенных зон шириной Е g .

Все возможные значения энергии в каждой энергетической зоне можно получить путем изменения k в пределах первой зоны Бриллюэна, поэтому зависимость Е(k ) часто строят только для первой зоны. Все остальные значения Е могут быть приведены в эту зону. Такой способ изображения Е(k ) называется схемой приведенных зон (рис.4.6). Возможен другой способ, получивший название расширенной зонной схемы (рис.4.7).

Здесь различные энергетические зоны размещаются в k -пространстве в различных зонах Бриллюэна.

Рис.4.7. Изображение энергетических зон в расширенной зонной схеме

На рис. 4.7 показана также параболическая зависимость Е(k ) для свободного электрона. Вблизи экстремумов дисперсионной кривой, т.е. вблизи точек k =0 и
(середина и граница первой зоны Бриллюэна),
можно разложить в ряд по ka (k отсчитывают от 0, если экстремум находится в середине зоны Брилллюэна, и от
, если экстремум находится на границе зоны Бриллюэна) и ограничиться первыми двумя членами разложения:

Подставляя это в (4.31) и (4.32) получим:

Минимум дисперсионной кривой Е(k) называют дном энергетической зоны , максимум – вершиной или потолком зоны. Поэтому полученные соотношения можно переписать в следующем более общем виде:

Для дна зоны;

Для потолка зоны.

Таким образом, у дна и вершины энергетической зоны энергия электрона пропорциональна квадрату волнового вектора, отсчитанного указанным выше способом, и обменному интегралу, определяющему ширину зоны. На рис.4.6 параболы, соответствующие уравнениям 4.35 и 4.36 показаны пунктиром.

Рассмотрим физическую природу разрывов в энергетическом спектре электрона на границах зон Бриллюэна. Выразим k через длину волн электрона λ и запишем условие разрыва функции Е(k ):

или
. (4.37)

Это известное условие Вульфа-Брэгга для электронной волны, падающей на решетку перпендикулярно атомным плоскостям. Следовательно, разрывы в энергетическом спектре электрона в кристалле происходят при выполнении условия брэгговского отражения (4.37). Электроны с такой длиной волны претерпевают отражение и распространяться в кристалле не могут.

Для реальных кристаллов зависимость Е(k) является, как правило, значительно более сложной, чем та, которая описывается формулой (4.30).

На рис. 4.8. в качестве примера приведены дисперсионные кривые, ограничивающие зону проводимости (кривая 1) и валентную зона (кривая 2) кремния.

Рис. 4.8. Дисперсионные кривые и зонная диаграмма кремния

Самое ценное утверждение в современной физике, достаточное для понимания всех свойств твёрдых тел – гипотеза об их атомном строении.

Рассмотрим на основе атомной гипотезы представления о движении электронов в твёрдых телах.Естественно попытаться связать свойства твёрдого тела со свойствами одиночного атома. Свойства атома хорошо изучены экспериментально и теоретически интерпретированы квантовой механикой. Их можно суммировать следующим образом.

1. Электрон, движущийся вокруг атомного ядра, может находиться не в любом состоянии, а только в одном из так называемых стационарных состояний.

2.Стационарное состояние характеризуется определенной энергией и распределением электронной плотности. Совокупность энергий стационарных состояний образует энергетический спектр электрона в атоме. Энергетический спектр абсолютно индивидуален для каждого атома, это – своего рода дактилоскопический отпечаток. Распределение электронной плотности показывает, в каких областях вокруг атома электрон пребывает преимущественно, то есть с вероятностью, близкой к 1. Энергетический спектр принято изображать в виде энергетической диаграммы (рис.1.1). Состояние с минимальной энергией называется основным. Пребывающий в нём электрон находится ближе всего к ядру.

Рис.1.1. Энергетический спектр атома водорода.

электронные свойства кристалла определяются, как и свойства атома, двумя факторами – энергетическим спектром электронов в кристалле и их статистикой, то есть законом распределения по состояниям .

Структуру энергетического спектра кристалла качественно можно выяснить, исходя из спектра отдельного атома.

Представим себе N одинаковых атомов, удалённых на столь большие расстояния, что они никак не влияют друг на друга. Энергетический спектр такого ансамбля независимых атомов будет состоять из N совпадающих атомных спектров. Каждое атомное состояние будет одновременно и состоянием ансамбля. Такие состояния, энергии которых совпадают, называются N – кратно вырожденными .

Начнём сближать атомы. При некотором межатомном расстоянии станут заметными электростатические силы электрон-ядерного притяжения и электрон-электронного отталкивания. Суммарно будет преобладать притяжение, но отталкивание приведет к тому, что ранее совпадавшие атомные уровни энергии расщепятся на N отдельных уровней (рис.1.4). При достижении межатомного расстояния образуется кристалл. Дальнейшему сближению препятствуют большие силы отталкивания.

Рис.1.4. Образование энергетического спектра кристалла

Каждый атомный уровень превращается, таким образом, в зону разрешённых энергий электрона в кристалле шириной . Если сумма полуширин соседних зон меньше расстояния между соответствующими атомными уровнями то разрешённые зоны разделены запрещённой зоной . Если же сумма полуширин превышает расстояние между уровнями, то соседние разрешённые зоны перекрываются, образуя одну, более широкую, разрешённую зону.

Описанная картина образования энергетического спектра применима к кристаллам металлов, полупроводников и диэлектриков. К какому типу будет принадлежать конкретный кристалл, определяется числом электронов Z в атоме.

Если Z – чётное число, то Z/2 нижайших разрешённых зон будут полностью заполнены, а остальные – пусты. Термин “заполненная зона” следует понимать в том смысле, что в кристалле имеется ровно N электронов, обладающих энергиями, принадлежащими данной разрешённой зоне. Самая верхняя из заполненных зон называется валентной зоной, а следующая за ней пустая – зоной проводимости. Кристаллы с таким заполнением зон называются диэлектриками.

пропорциональна Т : n ~T. Следовательно, коэффициент теплопроводности должен быть обратно пропорционален температуре, что качественно согласуется с опытом. При температурах ниже дебаевскойl практически не зависит отТ , и теплопроводность целиком определяется зависимостью отТ теплоемкости кристаллаС V ~ T 3 . Поэтому при низких температурахλ ~T 3 . Характерная зависимость теплопроводности от температуры представлена на рисунке 9.

В металлах помимо решеточной теплопроводности необходимо учитывать также и теплопроводность за счет переноса теплоты свободными электронами. Именно ею объясняется высокая теплопроводность металлов по сравнению неметаллами.

3. Электронная структура кристаллов.

3.1.Движение электронов в периодическом поле. Зонная структура энергетического спектра электронов в кристалле. Функции Блоха. Дисперсионные кривые. Эффективная масса.

В твердом теле расстояния между атомами сравнимы с их размерами. Поэтому электронные оболочки соседних атомов частично перекрываются между собой и по крайней мере валентные электроны каждого атома оказываются в достаточно сильном поле соседних атомов. Точное описание движения всех электронов с учетом кулоновского взаимодействия электронов друг с другом и с атомными ядрами представляет собой чрезвычайно сложную задачу даже для отдельного атома. Поэтому обычно используется метод самосогласованного поля, в котором задача сводится к описанию движения каждого отдельного электрона в поле эффективного потенциала, создаваемого атомными ядрами и усредненным полем остальных электронов.

Рассмотрим вначале структуру энергетических уровней кристалла, исходя из приближения сильной связи , в котором предполагается, что энергия связи электрона со своим атомом значительно превышает кинетическую энергию его перемещения от атома к атому. При больших расстояниях между атомами каждый из них обладает системой узких энергетических уровней, соответствующих связанным состояниям электрона с ионом. При сближении атомов ширина и высота потенциальных барьеров между ними уменьшается, и благодаря туннельному эффекту электроны получают возможность переходить от

одного атома к другому, что сопровождается расширением энергетических уровней и превращением их в энергетические зоны .(Рис. 10). В особенности это касается слабо связанных валентных электронов, которые получают возможность легко перемещаться по кристаллу от атома к атому, и в определенной степени становятся похожими на свободные электроны. Электроны более глубоких энергетических уровней значительно сильнее связаны каждый со своим атомом. Они образуют узкие энергетические зоны с широкими интервалами запрещенных энергий. На рис. 10 условно представлены потенциальные кривые и энергетические уровни для кристалла Na. Общий характер энергетического спектра электронов в зависимости от межъядерного расстояния, d, представлен на рисунке 11. В ряде случаев верхние уровни уширяются настолько сильно, что соседние энергетические зоны перекрываются между собой. На рис. 11 это имеет место при d = d1 .

Исходя из соотношения неопределенностей Гейзенберга – Бора, ширина энергетической зоны, ∆ε , связана с временемτ пребывания электрона в определенном узле решетки соотношением:∆ε τ > h. Вследствие туннельного эффекта электрон может просачиваться сквозь потенциальный барьер. Согласно оценке, при межатомном расстоянии d ~ 1Aτ ~ 10 -15 c, и следовательно∆ε ~ h/τ ~ 10 -19 Дж ~ 1 эВ, т.е. ширина запрещенной зоны составляет порядка одного или нескольких эВ. Если кристалл состоит из N атомов, то каждая энергетическая зона состоит из N подуровней. В кристалле размером 1 см3 содержится N~ 1022 атомов. Следовательно, при ширине зоны ~ 1 эВ расстояние между подуровнями составляет ~ 10 -22 эВ, что значительно меньше энергии теплового движения в нормальных условиях. Это расстояние столь ничтожно, что в большинстве случаев зоны можно считать практически непрерывными.

В идеальном кристалле ядра атомов расположены в узлах кристаллической решетки, образуя строго периодическую структуру. В соответствии с этим, потенциальная энергия электрона, V(r ) , также периодически зависит от пространственных координат, т.е. обладаеттрансляционной симметрией :

решетки, a i (i = 1,2,3,…) – векторы основных трансляций.

Волновые функции и уровни энергии в периодическом поле (1) определяются посредством решения уравнения Шредингера

представляющих собой произведение уравнения плоской бегущей волны, ei kr на периодический множитель,u k (r) = u k (r + a n ), с периодом решетки. Функции (3) называютсяфункциями Блоха .

При V(r ) = 0 уравнение (2) имеет решение в виде плоской волны:

где m – масса частицы. Зависимость энергии E от волнового числак изображаетсядисперсионной кривой . Согласно (5), в случае свободного электрона – это парабола. По аналогии со свободным движением, векторk в уравнении (3) называется волновым вектором, аp = h k – квазиимпульсом.

В приближении слабой связи рассматривается движение почти свободных электронов, на которые действует возмущающее поле периодического потенциала ионных остовов. В отличие от свободного движения, в периодическом поле V(r ) уравнение (2) имеет решенияне при всех значенияхЕ . Области разрешенных энергий чередуются с зонами запрещенных энергий. В модели слабой связи это объясняется брэгговским отражением электронных волн в кристалле.

Рассмотрим этот вопрос подробнее. Условие максимального отражения электронных волн в кристалле (условие Вульфа – Брэгга) определяется формулой (17) ч.I. Учитывая, что G = n g, отсюда получим:

Рассмотрим систему конечных интервалов, не содержащих значений k, удовлетворяющих соотношению (7):

{ - n g /2

Область изменения к в трехмерномk – пространстве, даваемая формулой

(8) для всех возможных направлений, определяет границы n – ой зоны Бриллюэна. В пределах каждой зоны Бриллюэна (n= 1,2,3,…) энергия электрона является непрерывной функциейk, а на границах зон она терпит разрыв. Действительно, при выполнении условия (7) амплитуды падающей,

ψ k (r ) = uk (r) ei kr

и отраженной,

ψ -k (r) = u - k (r) e -i kr

волн будут одинаковы, u k (r) = u -k (r). Эти волны дают два решения уравнения Шредингера:

Эта функция описывает скопление отрицательного заряда на положительных ионах, где потенциальная энергия – наименьшая. Аналогично, из формулы (9b) получаем:

ρ 2 (r) = |ψ 2 (r)|2 =4 u g/2 2 (r)sin 2 (gr/2)

Эта функция описывает такое распределение электронов, при котором они располагаются преимущественно в областях, соответствующих серединам расстояний между ионами. При этом потенциальная энергия будет больше. Функции ψ 2 будет соответствовать энергия Е2 > E1 .

запрещенных зон шириной Eg . Энергия Е`1 определяет верхнюю границу первой зоны, а энергия Е2 – нижнюю границу второй зоны. Это означает, что при распространении электронных волн в кристаллах возникают области значений энергии, для которых не существует решений уравнения Шредингера, имеющих волновой характер.

Поскольку характер зависимости энергии от волнового вектора существенным образом влияет на динамику электронов в кристалле, представляет интерес рассмотреть для примера простейший случай линейной цепочки атомов, расположенных на расстоянии а один от другого вдоль оси x. В этом случае g = 2π /a. На рисунке 12 представлены дисперсионные кривые для трех первых одномерных зон Бриллюена: (-

π/ a < k <π /a), (-2π /a < k < -π /a; π/ a < k < 2π /a), (-3π/ a < k < -2π /a; 2π /a < k < 3π /a). К запрещенным зонам относятся области энергии Е`1 < E < E2 , E`2 <

E < E3 и т.д.

На рис. 12 представлена расширенная зонная схема , в которой различные энергетические зоны размещены вк – пространстве в различных зонах Бриллюена. Однако, всегда возможно, а часто и удобно, выбрать волновой векторк так, чтобы конец его оказался лежащим внутри первой зоны Бриллюена. Запишем функцию Блоха в виде:

лежать в первой зоне Бриллюена. Подставляя к в формулу (11), получим:

имеет вид функции Блоха с блоховским множителем (13). Индекс n теперь указывает номер энергетической зоны, к которой принадлежит данная функция. Процедура приведения произвольного волнового вектора к первой зоне Бриллюена получила название схемы приведенных зон . В этой схеме векторк принимает значения -g/2 < k < g/2 , но одному и тому же значениюк будут отвечать различные значения энергии, каждое из которых будет соответствовать одной из зон. На рисунке 13 представлена схема приведенных зон для одномерной решетки, соответствующая расширенной зонной схеме на рисунке 12.

Таким образом, существование энергетических запрещенных зон обусловлено брэгговским отражением электронных волн де Бройля от кристаллических плоскостей. Точки разрыва определяются условиями максимального отражения волн.

Согласно законам квантовой механики, поступательное движение электрона рассматривается как движение волнового пакета с волновыми векторами, близкими к вектору к . Групповая скорость волнового пакета,v , определяется выражением.

Чтобы облегчить изложение, продолжим обсуждение на частном примере частицы с массой при наличии скалярного потенциала Предположим, кроме того, что когда Функция зависит от вектора фиксирующего положение частицы, а уравнение Шредингера, не зависящее от

времени, запишется в виде

На языке теории уравнений с частными производными уравнение типа (36) называется уравнением на собственные значения. Решение этого уравнения есть собственная функция, соответствующая собственному значению Е оператора Н.

В действительности задача на собственные значения определена только если сформулированы условия «регулярности» и граничные условия, которым должна удовлетворять функция Условия, накладываемые на функцию должны, конечно, согласовываться с общей интерпретацией волновой функции. Мы вернемся в этой теме в гл. IV. Потребуем здесь, чтобы функция и ее частные производные первого порядка были непрерывными и ограниченными функциями во всем пространстве.

В этом случае можно доказать справедливость следующих результатов, которые мы примем как данные, но будем иметь возможность проверить их на многочисленных примерах.

а) Если то уравнение (36) имеет решения только при некоторых определенных значениях Е, образующих дискретный спектр. Собственная функция для любого собственного значения (или каждая функция, если их несколько) обращается в нуль на бесконечности. Точнее говоря, интеграл распространенный на все конфигурационное пространство, сходится. Согласно статистической интерпретации это значит, что вероятность найти частицу на бесконечности равна нулю, частица остается локализованной в конечной области пространства. Говорят, что частица находится в связанном состоянии.

б) Если то уравнение (36) может иметь решения при любых положительных значениях Е. Говорят, что положительные энергии образуют непрерывный спектр. Соответствующие собственные функции не обращаются в нуль на бесконечности, их асимптотическое поведение аналогично поведению плоской волны . Точнее говоря, модуль стремится к конечной постоянной или осциллирует между значениями, из которых по крайней мере одно отлично от нуля. Частица не остается локализованной в конечной области. Волновые функции этого типа служат для описания задач столкновения; говорят, что мы имеем дело с частицей в несвязанном состоянии, или в стационарном состоянии рассеяния.

Таким образом, мы получаем первый фундаментальный результат: квантование уровней энергии связанных состояний, т. е. один из самых впечатляющих экспериментальных фактов,

обусловивших крушение классической теории. Определение квантованных уровней энергии представляется здесь как задача нахождения собственных значений. Решение этой задачи с наибольшей возможной степенью точности является одной из центральных задач волновой механики. Для некоторых особенно простых форм гамильтониана задача может быть решена строго. Именно таким является случай атома водорода (мы рассмотрим его подробно в гл. XI), когда уровни энергии оказываются собственными значениями оператора Получаемый спектр совпадает с тем, который предсказывала старая квантовая теория; мы уже имели случай подчеркнуть удивительное совпадение этого спектра с экспериментальными данными. В более сложных ситуациях следует использовать различные приближенные методы. Но во всех случаях, когда удавалось вычислить спектр энергий с достаточной степенью точности, согласие с опытом оказалось настолько хорошим, насколько этого вообще можно было ожидать от нерелятивистской теории.

Сама собственная функция может быть подвергнута в определенной мере экспериментальной проверке. Действительно, собственные функции дискретного спектра используются при вычислениях различных наблюдаемых величин, например, вероятностей квантовых переходов. Что же касается собственных функций непрерывного спектра, то их асимптотическая форма непосредственно связана с эффективными сечениями, характеризующими явления рассеяния, что будет подробно выяснено в дальнейшем. В области нерелятивистской атомной физики до сих пор не было обнаружено ни одного случая расхождения между предсказаниями волновой механики и экспериментальными данными.

Энергетический спектр электронов в твердом теле существенно отличается от энергетического спектра свободных электронов (являющегося непрерывным) или спектра электронов, принадлежащих отдельным изолированным атомам (дискретного с определенным набором доступных уровней) - он состоит из отдельных разрешенных энергетических зон, разделенных зонами запрещенных энергий.

Согласно квантово-механическим постулатам Бора, в изолированном атоме энергия электрона может принимать строго дискретные значения (электрон находится на одной из орбиталей). В случае же системы нескольких атомов, объединенных химической связью, электронные орбитали расщепляются в количестве, пропорциональном количеству атомов, образуя так называемые молекулярные орбитали. При дальнейшем увеличении системы до макроскопического уровня, количество орбиталей становится очень велико, а разница энергий электронов, находящихся на соседних орбиталях, соответственно очень маленькой - энергетические уровни расщепляются до двух практически непрерывных дискретных наборов - энергетических зон.

Наивысшая из разрешенных энергетических зон в полупроводниках и диэлектриках, в которой при температуре 0 К все энергетические состояния заняты электронами, называется валентной, следующая за ней - зоной проводимости. В проводниках зоной проводимости называется наивысшая разрешенная зона, в которой находятся электроны при температуре 0 К. Именно по принципу взаимного расположения этих зон все твердые вещества и делят на три большие группы (см. рис.):

  • проводники - материалы, у которых зона проводимости и валентная зона перекрываются (нет энергетического зазора), образуя одну зону, называемую зоной проводимости (таким образом, электрон может свободно перемещаться между ними, получив любую допустимо малую энергию);
  • диэлектрики - материалы, у которых зоны не перекрываются и расстояние между ними составляет более 3 эВ (для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется значительная энергия, поэтому диэлектрики ток практически не проводят);
  • полупроводники - материалы, у которых зоны не перекрываются и расстояние между ними (ширина запрещенной зоны) лежит в интервале 0,1–3 эВ (для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется энергия меньшая, чем для диэлектрика, поэтому чистые полупроводники слабо пропускают ток).

Зонная теория является основой современной теории твердых тел. Она позволила понять природу и объяснить важнейшие свойства металлов, полупроводников и диэлектриков. Величина запрещенной зоны (энергетическая щель между зонами валентности и проводимости) является ключевой величиной в зонной теории и определяет оптические и электрические свойства материала. Например, в полупроводниках проводимость можно увеличить, создав разрешенный энергетический уровень в запрещенной зоне путем легирования - добавления в состав исходного основного материала примесей для изменения его физических и химических свойств. В этом случае говорят, что полупроводник примесный. Именно таким образом создаются все полупроводниковые приборы: солнечные элементы, диоды, твердотельные и др. Переход электрона из валентной зоны в зону проводимости называют процессом генерации носителей заряда (отрицательного - электрона, и положительного - дырки), а обратный переход - процессом рекомбинации.

Зонная теория имеет границы применимости, которые исходят из трех основных предположений: а) потенциал кристаллической решетки строго периодичен; б) взаимодействие между свободными электронами может быть сведено к одноэлектронному самосогласованному потенциалу (а оставшаяся часть рассмотрена методом теории возмущений); в) взаимодействие с фононами слабое (и может быть рассмотрено по теории возмущений).

Иллюстрации


Автор

  • Разумовский Алексей Сергеевич

Изменения внесены

  • Наймушина Дарья Анатольевна

Источники

  1. Физический энциклопедический словарь. Т. 2. - М.: Большая Российская энциклопедия, 1995. - 89 с.
  2. Гуров В. А. Твердотельная электроника. - М.: Техносфера, 2008. - 19 с.