Аэробный гликолиз атф. Бескислородное окисление глюкозы включает два этапа. Гликоген и крахмал, дисахариды и другие виды моносахаридов


Гликолиз – последовательность ферментативных реакций, приводящих к расщеплению глюкозы с образованием ПВК, сопровождающихся образованием АТФ (в цитозоле клетки). Различают два вида гликолиза – аэробный и анаэробный.

Аэробный гликолиз: образуется ПВК, поступающая в митохондрии. В аэробных условиях ПВК далее, в общем пути катаболизма, распадается до СО 2 и Н 2 О. Аэробный гликолиз – часть аэробного распада глюкозы.

Анаэробный гликолиз: образуется ПВК, которая затем превращается в лактат. Анаэробный распад глюкозы и анаэробный гликолиз – синонимы. Анаэробный гликолиз протекает в первые минуты мышечной работы, в эритроцитах (нет митохондрий), при недостаточном поступлении кислорода.

Реакции гликолиза:

1). Фосфорилирование глюкозы. Реакцию катализирует гексокиназа, в паренхиматозных клетках печени - глюкокиназа. Образование глюкозо-6-фосфата в клетке - ловушка для глюкозы, т.к. мембрана для фосфорилированной глюкозы непроницаема. Глюкозо-6-фосфат - аллостерический ингибитор реакции.

2). Реакция изомеризации при участии глюкозо-6-фосфатизомеразы:

3) Лимитирующая стадия - реакция фосфорилирования, катализируемая 6-фосфофруктокиназой, которая ингибируется АТФ и цитратом, активируется - АМФ.

4). Реакция альдольного расщепления при участии альдолазы.

5). Изомеризация диоксиацетонфосфата, фермент – триозофосфатизомераза:

1 молекула глюкозы превращается в 2 молекулы глицеральдегид-3-фосфата (реакции 4, 5).

6). Реакция окисления, фермент - глицеральдегидфосфатдегидрогеназа:

7). Субстратное фосфорилирование при участии фосфоглицераткиназы:

8). Внутримолекулярный перенос фосфатной группы, фермент - фосфоглицеромутаза:

9). Реакция дегидратации при участии енолазы:

10). Субстратное фосфорилирование, фермент - пируваткиназа:

11). В анаэробных условиях протекает реакция восстановления пирувата в лактат под действием фермента лактатдегидрогеназы:

Суммарное уравнение анаэробного гликолиза:

Анаэробный гликолиз не нуждается в дыхательной цепи.

Выход АТФ при анаэробном гликолизе : АТФ образуется за счет двух реакций субстратного фосфорилирования: из 1,3-бисфосфоглицерата – 7 реакция, и из фосфоенолпирувата – 10 реакция. Учитывая, что 1 молекула глюкозы расщепляется на 2 триозы и дает 2 молекулы глицеральдегидфосфата, образуется 4АТФ. 2АТФ расходуется на активацию глюкозы (реакции 1 и 3 гликолиза). Суммарно.

Глюкоза + 2 АДФ + 2 НАД + + 2 H 3 PO 4  2 Пируват + 2АТФ + 2 НАДН + 2 Н +

Челночные механизмы.

Перенос водорода с цитозольного НАДН в митохондрии происходит при участии специальных механизмов, называющихся челночными. Суть этих механизмов сводится к тому, что НАДН в цитозоле восстанавливает некоторое соединение, способное проникать в митохондрию; в митохондрии это соединение окисляется, восстанавливая внутримитохондриальный НАД + , и вновь переходит в цитозоль. Самая активная малат-аспартатная система, действующая в митохондриях печени, почек и сердца. На каждую пару электронов цитозольной НАДН, переданную на кислород по этой системе, образуется 3 молекулы АТФ.

В скелетных мышцах и мозге перенос восстановительных эквивалентов от цитозольной НАДН осуществляет глицеролфосфатная система. При этом восстановительные эквиваленты передаются в цепь переноса электронов через комплекс II, и поэтому синтезируется только 2 молекулы АТФ.

Выход атф при аэробном гликолизе.

Основное физиологическое значение аэробного распада глюкозы заключается в использовании ее энергии для синтеза АТФ.

В наибольшей зависимости от аэробного гликолиза находится мозг. Он расходует 100 г глюкозы в сутки. В состоянии основного обмена около 20% кислорода потребляется мозгом. Поэтому недостаток глюкозы или кислорода проявляется, прежде всего, симптомами со стороны центральной нервной системы - головокружением, потерей сознания, судорогами.

Анаэробный гликолиз.

При аэробных условиях продуктом гликолиза в тканях является пируват, а НАДН, образовавшийся в ходе окисления, реокисляется за счет молекулярного кислорода. В анаэробных условиях, т. е. при недостатке кислорода в тканях, например в напряженно работающих скелетных мышцах, образовавшийся НАДН реокисляется не за счет кислорода, а за счет пирувата, восстанавливающегося при этом в лактат (молочную кислоту). Восстановление пирувата до лактата катализирует изофермент лактатдегидрогеназа .

Лактатдегидрогеназа представляет собой тетрамер, содержащий протомеры двух типов - М (muscle) и Н (heart). Известно 5 изоферментов, различающихся набором протомеров.

Изомерные формы ЛДГ 1 и ЛДГ 2 обнаруживаются в мозге, сердце, корковом веществе почек, т.е. в тканях с интенсивным снабжением кислородом. Форма ЛДГ 3 - в поджелудочной железе, ЛДГ 4 и ЛДГ 5 в скелетных мышцах, печени, мозговом веществе почек, т.е. в тканях с менее интенсивным снабжением кислородом. Все эти формы ферментов значительно различаются максимальной скоростью реакции и константами Михаэлиса для лактата и пирувата. ЛДГ 5 быстро катализирует восстановление пирувата в лактат при низких концентрациях лактата. ЛДГ 1 катализирует быстрое окисление лактата в пируват в сердечной мышце.

Чтобы понять, что такое гликолиз, придется обратиться к греческой терминологии, потому что данный термин произошел от греческих слов: гликос – сладкий и лизис – расщепление. От слова Гликос происходит и название глюкозы. Таким образом, под данным термином подразумевается процесс насыщения глюкозы кислородом, в результате которого одна молекула сладкого вещества распадается на две микрочастицы пировиноградной кислоты. Гликолиз – это биохимическая реакция, происходящая в живых клетках, и направленная на расщепление глюкозы. Существует три варианта разложения глюкозы, и аэробный гликолиз – один из них.

Процесс этот состоит из целого ряда промежуточных химических реакций, сопровождаемых выделением энергии. В этом и кроется основная суть гликолиза. Высвобождаемая энергия расходуется на общую жизнедеятельность живого организма. Общая формула расщепления глюкозы выглядит так:

Глюкоза + 2НАД + + 2АДФ + 2Pi → 2 пируват + 2НАДH + 2Н + + 2АТФ + 2Н2O

Аэробное окисление глюкозы с последующим расщеплением ее шестиуглеродной молекулы осуществляется посредством 10 промежуточных реакций. Первые 5 реакций, объединяет подготовительная фаза подготовки, а последующие реакции направлены на образование АТФ. В ходе реакций образуются стереоскопические изомеры сахаров и их производные. Основное накопление энергии клетками происходит во второй фазе, связанной с образованием АТФ.

Этапы окислительного гликолиза. Фаза 1.

В аэробном гликолизе выделяются 2 фазы.

Первая фаза – подготовительная. В ней глюкоза вступает в реакцию с 2 молекулами АТФ. Эта фаза состоит из 5 последовательных ступеней биохимических реакций.

1-я ступень. Фосфорилирование глюкозы

Фосфорилирование, то есть процесс переноса остатков фосфорной кислоты в первой и последующих реакциях производится за счет молекул адезинтрифосфорной кислоты.

В первой ступени остатки фосфорной кислоты из молекул адезинтрифосфата переносятся в молекулярную структуру глюкозы. В ходе процесса получается глюкозо-6-фосфат. В качестве катализатора в процессе выступает гексокиназа, ускоряющая процесс с помощью ионов магния, выступающих в качестве кофактора. Ионы магния задействованы и в других реакциях гликолиза.

2-я ступень. Образование изомера глюкозо-6-фосфата

На 2-й ступени происходит изомеризация глюкозо-6-фосфата во фруктозу-6-фосфат.

Изомеризация – образование веществ, имеющих одинаковый вес, состав химических элементов, но обладающих разными свойствами вследствие различного расположения атомов в молекуле. Изомеризация веществ осуществляется под действием внешних условий: давления, температур, катализаторов.

В данном случае процесс осуществляется под действием катализатора фосфоглюкозоизомеразы при участии ионов Mg + .

3-я ступень. Фосфорилирование фруктозо-6-фосфата

На данной ступени происходит присоединение фосфорильной группы за счет АТФ. Процесс осуществляется при участии фермента фосфофруктокиназа-1. Этот фермент и предназначен только для участия в гидролизе. В результате реакции получаются фруктозо-1,6-бисфосфат и нуклеотид адезинтрифосфат.

АТФ – адезинтрифосфат, уникальный источник энергии в живом организме. Представляет собой довольно сложную и громоздкую молекулу, состоящую из углеводородных, гидроксильных групп, азота и групп фосфорной кислоты с одной свободной связью, собранных в нескольких циклических и линейных структурах. Высвобождение энергии происходит в результате взаимодействия остатков фосфорной кислоты с водой. Гидролиз АТФ сопровождается образованием фосфорной кислоты и выделением 40-60 Дж энергии, которую организм затрачивает на свою жизнедеятельность.

Но прежде должно произойти фосфорилирование глюкозы за счет молекулы Адезинтрифосфата, то есть перенос остатка фосфорной кислоты в глюкозу.

4-я ступень. Распад фруктозо-1,6-дифосфата

В четвертой реакции фруктозо-1,6-дифосфат распадается на два новых вещества.

  • Диоксиацетонфосфат,
  • Глицеральд альдегид-3-фосфат.

В данном химическом процессе в качестве катализатора выступает альдолаза, фермент, участвующий в энергетическом обмене, и необходимый при диагностировании ряда заболеваний.

5-я ступень. Образование триозофосфатных изомеров

И, наконец, последний процесс – изомеризация триозофосфатов.

Глицеральд-3-фосфат продолжит участвовать в процессе аэробного гидролиза. А второй компонент – диоксиацетон фосфат при участии фермента триозофосфатизомеразы преобразуется в глицеральдегид-3-фосфат. Но трансформация эта – обратимая.

Фаза 2. Синтез Адезинтрифосфата

В данной фазе гликолиза будет аккумулироваться в виде АТФ биохимическая энергия. Адезинтрифосфат образуется из адезиндифосфата за счет фосфорилирования. А также образуется НАДН.

Аббревиатура НАДН имеет очень сложную и труднозапоминаемую для неспециалиста расшифровку – Никотинамидадениндинуклеотид. НАДН – это кофермент, небелковое соединение, участвующее в химических процессах живой клетки. Он существует в двух формах:

  1. окисленной (NAD + , NADox);
  2. восстановленной (NADH, NADred).

В обмене веществ NAD принимает участие в окислительно-восстановительных реакциях транспортируя электроны из одного химического процесса в другой. Отдавая, или принимая электрон, молекула преобразуется из NAD + в NADH, и наоборот. В живом организме НАД вырабатывается из триптофана или аспартата аминокислот.

Две микрочастицы глицеральдегид-3-фосфата подвергаются реакциям, в ходе которых образуется пируват, и 4 молекулы АТФ. Но конечный выход адезинтрифосфата составит 2 молекулы, поскольку две затрачены в подготовительной фазе. Процесс продолжается.

6-я ступень – окисление глицеральдегид-3-фосфата

В данной реакции происходит окисление и фосфорилирование глицеральдегид-3-фосфата. В итоге получается 1,3-дифосфоглицериновая кислота. В ускорении реакции участвует глицеральдегид-3-фосфатдегидрогеназа

Реакция происходит при участии энергии, полученной извне, поэтому она называется эндергонической. Такие реакции протекают параллельно с экзергоническими, то есть выделяющими, отдающими энергию. В данном случае такой реакцией служит следующий процесс.

7-я ступень. Перемещение фосфатной группы с 1,3-дифосфоглицерата на адезиндифосфат

В этой промежуточной реакции фосфорильная группа переносится фосфоглицераткиназой с 1,3-дифосфоглицерата на адезиндифосфат. В итоге получаются 3-фосфоглицерат и АТФ.

Фермент фосфоглицераткиназа приобрел свое название за способность катализировать реакции в обоих направлениях. Этот фермент также транспортирует фосфатный остаток с адезинтрифосфата на 3-фосфоглицерат.

6-я и 7-я реакции часто рассматриваются как единый процесс. 1,3-дифосфоглицерат в нем рассматривается как промежуточный продукт. Вместе 6-я и 7-я реакции выглядят так:

Глицеральдегид-3-фосфат+ADP+Pi +NAD+⇌3 -фосфоглицерат+ATP+NADH+Н+,ΔG′о = −12,2 кДж/моль.

И суммарно эти 2 процесса освобождают часть энергии.

8-я ступень. Перенесение фосфорильной группы с 3-фосфоглицерата.

Получение 2-фосфоглицерата – процесс обратимый, происходит под каталитическим действием фермент фосфоглицератмутазы. Фосфорильная группа переносится с двухвалентного атома углерода 3-фосфоглицерата на трехвалентный атом 2-фосфоглицерата, в итоге образуется 2-фосфоглицериновая кислота. Реакция проходит при участи положительно заряженных ионов магния.

9-я ступень. Выделение воды из 2-фосфоглицерата

Эта реакция в своей сути является второй реакцией расщепления глюкозы (первой была реакция 6-й ступени). В ней фермент фосфопируватгидратаза стимулирует отщепление воды от атома С, то есть процесс элиминирования из молекулы 2-фосфоглицерата и образование фосфоенолпирувата (фосфоенолпировиноградной кислоты).

10-я и последняя ступень. Перенос фосфатного остатка с ФЕП на АДФ

В заключительной реакции гликолиза задействованы коферменты – калий, магний и марганец, в качестве катализатора выступает фермент пируваткиназа.

Преобразование енольной формы пировиноградной кислоты в кето-форму является обратимым процессом, и в клетках присутствуют оба изомера. Процесс перехода изометрических веществ из одного в другой называется таутомеризацией.

Что такое анаэробный гликолиз?

Наряду с аэробным гликолизом, то есть расщеплением глюкозы при участии О2 , существует и так называемый анаэробный распад глюкозы, в котором кислород не участвует. Он также состоит из десяти последовательных реакций. Но где протекает анаэробный этап гликолиза, связан ли он с процессами кислородного расщепления глюкозы, или это самостоятельный биохимический процесс, попробуем в этом разобраться.

Анаэробный гликолиз – это распад глюкозы при отсутствии кислорода с образованием лактата. Но в процессе образования молочной кислоты НАДН в клетке не накапливается. Этот процесс осуществляется в тех тканях и клетках, которые функционируют в условиях кислородного голодания – гипоксии. К таким тканям в первую очередь относятся скелетные мышцы. В эритроцитах, несмотря на наличие кислорода, тоже в процессе гликолиза образуется лактат, потому что в кровяных клетках отсутствуют митохондрии.

Анаэробный гидролиз протекает в цитозоле (жидкой части цитоплазмы) клеток и является единственным актом, продуцирующим и поставляющим АТФ, поскольку в данном случае окислительное фосфорилирование не работает. Для окислительных процессов нужен кислород, а его в анаэробном гликолизе нет.

И пировиноградная, и молочная кислоты служат источниками энергии, для выполнения мышцами определенных задач. Излишки кислот поступают в печень, где под действием ферментов снова превращаются в гликоген и глюкозу. И процесс начинается снова. Недостаток глюкозы восполняется питанием – употреблением сахара, сладких фруктов, и иных сладостей. Так что нельзя в угоду фигуре совсем отказываться от сладкого. Сахарозы нужны организму, но в меру.

Прежде чем изучать клеточное дыхание подробно, полезно ознакомиться с ним в общих чертах. На рисунке указаны пути аэробного и анаэробного дыхания . Отметим, что аэробный путь только один, тогда как анаэробных два. Отметим также, что первый этап у всех этих путей общий. Этот этап - гликолиз.

Гликолиз

Гликолизом называется окисление глюкозы до пировиноградной кислоты. Как это видно из рисунка, из одной молекулы глюкозы (6-углеродного соединения, 6С) образуются две молекулы пировиноградной кислоты бета-углеродного соединения, 3С). Процесс протекает не в митохондриях, а в цитоплазме клетки, и кислород для него не требуется. Процесс может быть подразделен на три этапа:

1. Фосфорилирование сахара . В результате этой реакции сахар «активируется», т. е. его реакционная способность возрастает. При активации потребляется некоторое количество АТФ и, поскольку весь смысл дыхания состоит в том, чтобы поставлять АТФ, его расходование может показаться нецелесообразным. Это следует, однако, рассматривать как своего рода «инвестиции», благодаря которым позже смогут произойти реакции, приводящие к образованию АТФ.

2. Расщепление фосфорилированного 3С-сахара на два 3С-сахарофосфата. С этим связано и происхождение названия «гликолиз» (от греч. lysis - разложение, распад), Два образующихся сахарофосфата - изомеры. Прежде чем подвергнуться дальнейшему превращению, один из них переходит в другой, так что получается два идентичных 3С-сахарофосфата.

3. Окисление путем отщепления водорода .

Каждый 3С-сахарофосфат превращается в пировиноградную кислоту. При этом происходит дегидрирование с образованием одной молекулы восстановленного НАД и двух молекул АТФ. Общий выход (от двух молекул 3С-сахарофосфата) составляет: две молекулы восстановленного НАД и четыре молекулы АТФ.

Итак, на первом этапе гликолиза в реакциях фосфорилирования потребляются, две молекулы АТФ, а на третьем - образуются четыре молекулы. Таким образом, чистый выход АТФ при гликолизе равен двум молекулам. Кроме того, при гликолизе отщепляются и передаются НАД четыре атома водорода. Их судьбу мы рассмотрим позднее. Суммарную реакцию гликолиза можно записать так:


Потребление и выход различных веществ в процессе гликолиза указаны в таблице.

При использовании в процессе дыхания липидов глицерол легко превращается в 3С-сахарофосфат, который и вступает на путь гликолиза. При этом расходуется одна молекула АТФ и три молекулы образуются.

Конечная судьба пировиноградной кислоты зависит от присутствия кислорода в клетке. Если кислород имеется, то пировиноградная кислота переходит в митохондрии для полного окисления до СО2 и воды (аэробное дыхание). Если же кислорода нет, то она превращается либо в этанол, либо в молочную кислоту (анаэробное дыхание).

Ката­болизм 1 глюкозы сопровождается затратой 2 молекул АТФ на субстратное фосфорилирование гексоз, образованием в реакциях субстратного фосфорилирования 4 молекул АТФ, восстановлением 2 молекул НАДН 2 и синтезом 2 молекул ПВК. 2 цитоплазматические молекулы НАДН 2 , в зависимости от челночного механизма, дают в дыхательной цепи митохондрий от 4 до 6 молекул АТФ.

Таким образом, конечный энергети­ческий эффект аэробного гликолиза, в зависимости от челночного механизма, равен от 6 до 8 молекул АТФ.

Анаэробный гликолиз

В анаэробных условиях ПВК, подобно О 2 в дыхатель­ной цепи, обеспечивает регенерацию НАД + из НАДН 2 , что необходимо для продолжения реакций гликолиза. ПВК при этом превращается в молочную кислоту. Реакция протекает в цитоплазме с участием лактатдегидрогеназы.

11.Лактатдегидрогеназа (лактат: НАД + оксидоредуктаза). Стоит из 4 субъединиц, имеет 5 изоформ.

Лактат не является конечным продуктом метаболизма, удаляемым из организма. Это вещество из ткани поступает в кровь и утилизируется, превращаясь в печени в глюко­зу (Цикл Кори), или при доступности кислорода превращает­ся в ПВК, который вступает в общий путь катаболизма, окисляясь до СО 2 и Н 2 О.

Выход АТФ при анаэробном гликолизе

Анаэробный гликолиз по сравнению с аэроб­ным менее эффективен. Ката­болизм 1 глюкозы сопровождается затратой 2 молекул АТФ на субстратное фосфорилирование, образованием в реакциях субстратного фосфорилирования 4 молекул АТФ и синтезом 2 молекул лактата. Таким образом, конечный энергети­ческий эффект анаэробного гликолиза равен 2 молекулам АТФ.

Пластическое значение катаболизма глюкозы

При ка­таболизме глюкоза может выполнять пластические функции. Метаболиты гликолиза ис­пользуются для синтеза новых соединений. Так, фруктозо-6ф и 3-ФГА участвуют в образовании рибозо-5-ф (компонент нуклеотидов); 3-фосфоглицерат может включаться в синтез ами­нокислот, таких как серии, глицин, цистеин. В печени и жировой ткани Ацетил-КоА исполь­зуется при биосинтезе жирных кис­лот, холестерина, а ДАФ для синтеза глицерол-3ф.



Регуляция гликолиза

Эффект Пастера – снижение скорости потребления глюкозы и накопления лактата в присутствии кислорода.

Эффекта Пастера объясняется наличием конкуренции между ферментами аэробного (малат ДГ, глицерол-6ф ДГ, ПВК ДГ) и анаэробного (ЛДГ) пути окисления за общий метаболит ПВК и кофермент НАДН 2 . Без кислорода митохондрии не потребляют ПВК и НАДН 2 , в результате их концентрация в цитоплазме повышается и они идут на образование лактата. В присутствии кислорода, митохондрии выкачивают ПВК и НАДН 2 из цитоплазмы, прерывая реакцию образования лактата. Так как анаэробный гликолиз дает мало АТФ, возможен избыток АМФ (АДФ + АДФ = АМФ + АТФ), который, через фосфофруктокиназу 1, стимулирует гликолиз. При аэробном катаболизме глюкозы АТФ образуется много, возможный избыток АТФ через фосфофруктокиназу 1 и пируваткиназу, наоборот тормозит гликолиз. Накопление глюкозы-6ф ингибирует гексокиназу, что снижает потребление глюкозы клетками.

МЕТАБОЛИЗМ ФРУКТОЗЫ И ГАЛАКТОЗЫ

Фрук­тоза и галактоза наряду с глюкозой используются для получения энергии или синтеза веществ: гликогена, ТГ, ГАГ, лактозы и др.

Метаболизм фруктозы

Значительное количество фруктозы, образу­ющееся при расщеплении сахарозы, превраща­ется в глюкозу уже в клетках кишечника. Часть фруктозы поступает в печень.