Великие ученые и судьбы физиологии. История развития физиологии Ученые по анатомии человека и их открытия


Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Развитие и формирование представлений об анатомии и физиологии начинаются с глубокой древности. Среди первых известных истории ученых-анатомов следует назвать Алкемона из Кратоны, который жил в V в. до н. э. Он первый начал анатомировать (вскрывать) трупы животных, чтобы изучить строение их тела, и высказал предположение о том, что органы чувств имеют связь непосредственно с головным мозгом, и восприятие чувств зависит от мозга.

3 слайд

Описание слайда:

Гиппократ (ок. 460 - ок. 370 до н. э.) - один из выдающихся ученых медицины Древней Греции. Изучению анатомии, эмбриологии и физиологии он придавал первостепенное значение, считая их основой всей медицины. Он собрал и систематизировал наблюдения о строении тела человека, описал кости крыши черепа и соединения костей при помощи швов, строение позвонков, ребер, внутренние органы, орган зрения, мышцы, крупные сосуды.

4 слайд

Описание слайда:

Выдающимися учеными-естествоиспытателями своего времени были Платон (427-347 до н. э.) и Аристотель (384-322 до н. э.). Изучая анатомию и эмбриологию, Платон выявил, что головной мозг позвоночных животных развивается в передних отделах спинного мозга. Аристотель, вскрывая трупы животных, описал их внутренние органы, сухожилия, нервы, кости и хрящи. По его мнению, главным органом в организме является сердце. Он назвал самый крупный кровеносный сосуд аортой.

5 слайд

Описание слайда:

Самым выдающимся ученым в разных областях медицины после Гиппократа стал римский анатом и физиолог Клавдий Гален (ок. 130 - ок. 201). Он впервые начал читать курс анатомии человека, сопровождая вскрытием трупов животных, главным образом обезьян. Вскрытие человеческих трупов в то время было запрещено, в результате чего Гален, факты без должных оговорок, переносил на человека строение тела животного. Обладая энциклопедическими знаниями, он описал 7 пар (из 12) черепных нервов, соединительную ткань, нервы мышц, кровеносные сосуды печени, почек и других внутренних органов, надкостницу, связки.

6 слайд

Описание слайда:

Особенно большой вклад в развитие анатомии внес итальянский ученый и художник эпохи Возрождения Леонардо да Винчи (1452-1519) Он анатомировал 30 трупов, сделал множество рисунков костей, мышц, внутренних органов, снабдив их письменными пояснениями. Леонардо да Винчи положил начало пластической анатомии.

7 слайд

Описание слайда:

Основателем научной анатомии считается профессор Падуанского университета Андреас Везалий (1514-1564), который на основе собственных наблюдений, сделанных при вскрытии трупов, написал классический труд в 7 книгах "О строении человеческого тела" (Базель, 1543). В них он систематизировал скелет, связки, мышцы, сосуды, нервы, внутренние органы, мозг и органы чувств. Исследования Везалия и выход в свет его книг способствовали развитию анатомии. В дальнейшем его ученики и последователи в XVI-XVII вв. сделали много открытий, детально описали многие органы человека. С именами этих ученых в анатомии связаны названия некоторых органов тела человека: Г. Фаллопий (1523-1562) - фаллопиевы трубы; Б. Евстахий (1510-1574) - евстахиева труба; М. Мальпиги (1628- 1694) - мальпигиевы тельца в селезенке и почках.

8 слайд

Описание слайда:

После многочисленных исследований английский ученый Уильям Гарвей (1578-1657) издал книгу "Анатомическое исследование о движении сердца и крови у животных" (1628), где привел доказательство движения крови по сосудам большого круга кровообращения, а также отметил наличие мелких сосудов (капилляров) между артериями и венами. Эти сосуды были открыты позже, в 1661 г., основателем микроскопической анатомии М. Мальпиги.

Вильям Гарвей
Официальной датой возникновения
физиологии можно считать 1628 г.,
когда английский врач, анатом и
физиолог Вильям Гарвей
опубликовал свой трактат
«Анатомическое исследование о
движении сердца и крови у
животных». В нем он впервые
представил экспериментальные
данные о наличии большого и малого
кругов кровообращения, а также о
влиянии сердца на кровообращение.

В XVII в. ученые проводили
целый ряд исследований по
физиологии мышц, дыхания,
обмена веществ. Но
полученные
экспериментальные данные
объяснялись в то время с
позиций анатомии, химии и
физики.
Первое учебное пособие по
физиологии было
опубликовано немецким
ученым А. Галлером в
середине XVIII в.
А. Галлер

Ф.Веллер
Т.Шванн
И. М. Сеченов
Дальнейшее развитие физиологическая наука получила в XIX в. Этот
период связан с достижениями в органической химии (Ф. Веллер
синтезировал мочевину);
в гистологии - открытием клетки (Т. Шванн);
в физиологии - созданием рефлекторной теории нервной
деятельности (И.М. Сеченов).

К. Людвиг
К. Бернар
И. Ф. Цион
Ф.В.Овсяников
Важной вехой в развитии экспериментальной физиологии было изобретение кимографа и
разработка метода графической регистрации артериального давления немецким ученым
К.Людвигом в 1847 г.
Значительный вклад во многие области физиологии в этот период внес знаменитый
французский ученый К. Бернар (1813-1878). Его исследования касались функций спинного
мозга, обмена углеводов, активности пищеварительных ферментов, роли желез внутренней
секреции.
Интересные открытия в области физиологии в середине и конце XIX в. были сделаны в
области регуляции деятельности сердца и кровеносных сосудов К. Людвиг (1816-1895), И.Ф.
Цион (1842-1912), К. Бернар (1813-1878), Ф. В. Овсяников (1827-1906).

И.М.Сеченов
И.П.Павлов
Важная заслуга в физиологии принадлежит И.М. Сеченову, который впервые обнаружил наличие
процессов торможения в центральной нервной системе и на основании этого создал учение о
рефлекторной деятельности организма. Его труд «Рефлексы головного мозга» послужил основой
формирования учения о нервизме. В этой работе он высказал предположение, что различные проявления
психической деятельности человека в конечном счете сводятся к мышечному движению. Идеи ИМ.
Сеченова позднее успешно развивал знаменитый русский физиолог И.П. Павлов.
На основании объективного изучения поведенческих реакций он создал новое направление в науке -
физиологию высшей нервной деятельности. Учение И.П. Павлова о высшей нервной деятельности человека
и животных позволило углубить теорию рефлекторной деятельности мозга.

Значительное место в развитии физиологии занимала церковно-монастырская
медицина: лекари-монахи работали в Полоцке, Турове и других городах. С 14 века на
Беларуси появились врачи, которые получали образование в Пражском, Падуанском,
Гальском и других университетах, а также народные лекари-практики и медики-хирурги
(цирульники). Первое анатомирование тела было проведено в 1586 году в Гродно для
выяснения причины смерти короля Стефана Батория. Первые госпитали открылись в
Бресте в 1495 г. и Минске в 1513 г. В 17 веке по несколько госпиталей было в Гродно,
Новогрудке, Слуцке, Пинске, Полоцке, Несвиже, Лиде и других городах. В отдельных
больницах уже оказывалась высококвалифицированная медицинская помощь с
элементами хирургической и акушерской специализации.
До 1775 года медицинских школ в Республике Беларусь не существовала и только в 1775
году в Гродно появилась медицинская академия – первый учебный и научный центр
Беларуси. Здесь был создан музей анатомических препаратов. Научные исследования
проводились под руководством Ж.Э.Жилибера (1741-1814 гг.), с его именем связаны
первые описания строения организма человека. При преподавании много внимания
уделялось вопросам сравнительной анатомии и физиологии. В 18-19 вв. в республике
были заложены основы медицинского образования: кроме Гродненской медицинской
академии, были открыты акушерские школы в Могилёве (1865 г.), Витебске (1872 г.),
Гродно (1875 г.), фельдшерские в Могилёве (1875 г.), Витебске (1906 г.), Минске (1907 г.).
На территории дореволюционной Беларуси существовало 3 научно-исследовательских
учреждения, наиболее крупным из них была станция лекарственных растений под
Могилёвом (1910 г.).

С.И.Лебёдкин
П.И.Лобко
Значительным событием в научной жизни республики явилось открытие в 1921 году в Минске
Белорусского государственного университета. Развитие анатомо-физиологических наук в Беларуси
связано именно с организацией кафедр анатомии (С.И.Лебёдкин – основоположник национальной
школы морфологов) и физиологии (Л.П.Рязанов) на медицинском факультете в составе БГУ (1921 г.) и
Минском медицинском институте (1930 г.).
После 40-ых годов анатомо-физиологические исследования концентрируются на соответствующих
кафедрах медицинских вузов Беларуси и в лабораториях НИИ Министерства здравоохранения.
Белорусские анатомы установили взаимосвязь между развивающимися нервами и иннервируемыми
ими тканями, открыли ряд закономерностей формирования и строения вегетативной нервной
системы, обосновали представление о множественности иннервационных связей внутренних
органов, образовании новых нервных путей (Д.М.Голуб). Исследованы вопросы нейроморфологии
(Д.П.Амвросьев, П.И.Лобко, А.С.Леонтюк), строение костей и суставов (Е.Д.Гевлич).

В настоящее время научно-исследовательская работа по анатомофизиологическому направлению ведётся на соответствующих кафедрах
Витебского, Гомельского, Гродненского, Минского медицинских университетов,
Белорусской академии физической культуры и спорта, в Витебской академии
ветеринарной медицины, БГУ, ВГУ и других университетах. Значительную роль в
развитии анатомии сыграли работы Д.М.Голуба по проблемам эмбриогенеза
человека, изучении структурной организации вегетативной нервной системы,
нервных путей и дополнительных центров иннервации. Изучено строение
симпатической нервной системы, нервов надпочечников, кровеносных сосудов и
других органов (А.С.Леонтюк, А.П.Амвросьев, П.И.Лобко). Исследуются
лимфатические сосуды костей и суставов (В.И.Ашкадеров), костный и
перепончатый лабиринты человека (З.И.Ибагимова), возрастные особенности
головного мозга и его артериальных сосудов (А.Н.Габузов). В развитие физиологии
внесли вклад Н.И.Аринчин, Л.Ю.Брановицкий, И.А.Витохин, В.Н.Гурин,
А.С.Дмитриев, И.К.Жмакин, А.П.Кесарева, В.Н.Калюнов, А.А.Логинов, В.В.Солтанов,
Г.С.Юньев. В области физиологии изучаются центральные и периферические
механизмы терморегуляции, закономерности деятельности вегетативной нервной
системы в норме и в условиях экстремальных факторов окружающей среды.

1.Физиология -это:
А)Наука о строении организмов.
Б)наука, изучающая процессы жизнедеятельности организма, его различных органов и систем, их взаимодействие друг с другом и
внешней средой.
В)наука о процессах жизнедеятельности, развитии, происхождении человека.
2.Официальная дата возникновения физиологии:
А)1632г.
Б)1628г.
В)1624г.
3.Первое учебное пособие по физиологии было опубликовано ученым:
А)А. Галлер
Б)Ф.Веллер
В)Т.Шванн
4.В каком году появился первый учебный и научный центр Беларуси?
А)1773г.
Б)1770г.
В)1775г.

Б)наука, изучающая процессы жизнедеятельности организма,
его различных органов и систем, их взаимодействие друг с другом
и внешней средой.
Б)1628г.
А)А. Галлер
В)1775г.

Изложенные выше краткие сведения о назначении отдельных органов и систем, как и более подробные данные об их работе, которые составляют содержание дальнейших бесед, были добыты физиологией в ходе трудных многовековых исследований. Золотыми буквами вписаны в историю нашей науки имена многих ученых. Однако два из них дали начало двум эпохам в развитии физиологии и могут быть названы корифеями из корифеев.

Начало развитию подлинно научной физиологии положил знаменитый ученый эпохи Возрождения Уильям Гарвей. Он ввел в физиологию и стал широко пропагандировать как главный метод научного познания опыты, т. е. исследования на живом организме. До этого главным источником знаний об организме были для ученых средневековья книги древних авторитетов, базировавшихся на внешнем наблюдении за организмом, и - в отдельных случаях - , которое могло дать сведения об устройстве нашего тела, но отнюдь не о деятельности его. Опыт, эксперимент - началась эпоха бурного развития анализа физиологических процессов. После выхода в свет в 1628 году книги Гарвея наука в течение двух с половиной последующих столетий накопила массу сведений о работе отдельных органов. Однако применявшиеся по почину Гарвея так называемые острые опыты, или вивисекции (от лат. vivus - живой и sectio - рассекание), представляли достаточно грубое вторжение исследователя в организм. К концу опыта животное погибало. Для первоначального накопления данных о функциях органов и систем это было необходимо. Однако сведений о нормальной работе целостного организма подобное аналитическое направление дать не могло.

Новую эру в физиологии открыл в конце XIX века . Его исследования знаменовали начало эпохи синтеза физиологических процессов. Павлов ввел в нашу науку метод так называемых хронических опытов, т. е. экспериментов, при которых животное путем специальной предварительной операции подготовляется к исследованию и затем может изучаться долгие годы без всякого нарушения его жизнедеятельности, в нормальных условиях существования. Если предшествующая эпоха позволила собрать массу отдельных «кирпичиков» для построения физиологии, то Павлов объединил их в стройное здание нашей науки. Он успешно стал строить и «крышу» его, открыв важнейшие законы работы высшего отдела головного мозга, а с ними дав чрезвычайно много для расшифровки физиологических основ психической деятельности. Сеченовские идеи положили начало возведению «крыши», павловские исследования блестяще развили их.

Громадный вклад в развитие физиологии внесли и другие русские ученые. Это является общепризнанным. Один из крупнейших зарубежных физиологов XX века англичанин Дж. Баркрофт специально отметил в предисловии к своему главному труду: «Велик долг мировой физиологии перед русской наукой».

Последняя четверть века характеризуется вновь расцветом аналитического направления. Выдающиеся успехи техники дали в руки физиологов тончайшие методы изучения жизненных процессов на клеточном и молекулярном уровнях - методы, о которых полвека назад не приходилось и мечтать. Накапливаются массы разнообразных данных по физиологии микроструктур. Сегодня эти данные представляют собой как бы один берег физиологического потока. На другом его берегу - материалы синтетической физиологии, изучающей организм как целое или работу отдельных органов и систем в целостном организме. Между этими двумя уровнями современной физиологии - молекулярно-клеточным и организменным - пока существует разрыв, мосты еще не наведены. Конечно, настанет время, когда накопятся материалы для возведения таких мостов. Явится новый великий ученый, достойный встать в ряд с Гарвеем и Павловым, который соединит оба берега.

Настоящая книга посвящена прежде всего организму как ансамблю функций, как целому. Отсюда ясно, на каком берегу мы будем в основном находиться. Работа над этой книгой была начата в преддверии 1986 года - ровно через полвека после кончины И. П. Павлова, которого перестало биться в 1936 году. Поэтому, отдавая дань памяти великому ученому, мы уделим его открытиям особое внимание.

Физиология, как наука возникла в XVII столетии и связана с именем английского врача Вильяма Гарвея (1578-1657) , который проводил анатомические исследования на животных и человеке и описал систему кровообращения. В 1628 г. он выпустил трактат «Анатомическое исследование о движении сердца и крови у животных», в котором писал писал: «сердце – источник жизни, начало всего, солнце, от которого зависит вся жизнь, вся свежесть и сила организма».

Итальянский ученыйЛ. Гальвани (1737-1788) открыл животное электричество. В 1791 году опубликовал «Трактат о силах электричества при мышечном движении»

Первым, увидившим живую клетку, был англичанин Роберт Гук (1635-1703).

Клеточную теорию растений и животных сформулировал Теодор Шванн (1810-1882).

Во второй половине 19 века и начале 20 столетия физиология в России становится одной из передовых в мире наук. Здесь выдающуюся роль сыграли столичные школы И.М. Сеченова, И.П. Павлова, И.И. Мечникова А.А. Ухтомского.

Сеченов Иван Михайлович (1829-1905). К.А Тимирязев и И.П. Павлов называли его отцом русской физиологии. Им изучены закономерности переноса газов крови, некоторые вопросы мышечной деятельности, утомления, сделаны классические открытия по явлению суммации раздражений и феномену центрального торможения. Он изучал механизмы так называемой психической деятельности, которая считалась непознаваемой, он впервые стал рассматривать деятельность мозга как рефлекторную деятельность. Психика человека находится под воздействием внешних факторов и определяется молекулярным строением клеток мозга. Сеченов дружил с Н.Г. Чернышевским – русским революционным демократом. В своем сочинении «Что делать» Чернышевский отразил И.М. Сеченова в лице героя романа Кирсанова.

Его главные работы: «Рефлексы головного мозга», «Впечатления и действительность», «Элементы мысли».

Павлов Иван Петрович (1849-1936). Великий русский физиолог, лауреат Нобелевской премии (1904). Он создал учение о высшей нервной деятельности животных и человека, процессах пищеварения и их связи с головным мозгом. Доказал экспериментально, что наряду с выделением слюны в ответ на раздражение полости рта пищей, можно добиться выделения слюны у животных на любой раздражитель – свет, звук, если этот раздражитель подкрепляется последующим кормлением животного. Соответственно этому И.П. Павлов назвал рефлексы первого рода – безусловными, рефлексы второго рода – условными.

Внешние, а так же внутренние раздражения от внутренних органов, мускулатуры, костей, связочного аппарата сигнализируют животному о благоприятных или неблагоприятных для него в биологическом смысле условиях, вызывая тем самым с его стороны объективно целесообразные действия. Кора головного мозга является тем замечательным прибором, где проецируются все эти сигналы и вырабатываются ответные действия. Павлов разработал понятия об анализаторах, о типах высшей нервной деятельности, первой и второй сигнальных системах. В коре головного мозга имеют место процессы возбуждения и торможения, их взаимодействие обеспечивает нормальную работу головного мозга и всего организма. Павлов разъяснил сущность сна, механизм гипноза, сущность сновидения. Его работы: «Лекции о работе главных пищеварительных желез» (1897 г.), «Двадцатилетний опыт объективного изучения высшей нервной деятельности животных» (1923 г), «Лекции о работе больших полушарий головного мозга» (1927 г).

Мечников Илья Ильич (1845-1916) . Лауреат Нобелевской премии за открытие фагоцитоза. Занимался зоологией, эмбриологией, боролся с хлебными вредителями.


1. Этапы развития физиологии. Вклад отечественных ученых в развитие физиологической науки

Год становления физиологии - 1628 г. - вышла книга английского анатома и физиолога У. Гарвея "Учение о движении сердца и крови в организме" - впервые описан большой круг кровообращения. Периоды физиологии:допавловский - 1628-1883 г.; павловский - с 1883 г. - диссертация И. Павлова "Центробежные нервы сердца". Павловский этап базируется на трех основных принципах - организм - это единая система , которая объединяет:различные органы в их сложном взаимодействии между собой, организм - единое целое с окружающей средой; принцип нервизма.Из русских ученых, работающих в XIX веке в области физиологии, следует отметить А. М. Филомафитского, В. А. Басова, Н. А. Миславского, Ф. В. Овсянникова, А. Я. Кулябко, С. П. Боткина и др. Одним из них принадлежат открытия в области физиологии крови и кровообращения, другие изучали функции пищеварения, третьи - дыхания, нервной системы и т. д. Особую роль в области физиологии сыграли ученые И. М. Сеченов и И. П. Павлов.Иван Михайлович Сеченов (1829 - 1905) - основоположник русской физиологии. И. М. Сеченов открыл явления торможения в центральной нервной системе, впервые изучил состав газов крови, выяснил роль и значение гемоглобина в переносе углекислого газа и т. д. Исключительное значение имела книга И. М. Сеченова "Рефлексы головного мозга", вышедшая в 1863 г. В ней впервые высказано положение, что вся деятельность головного мозга носит рефлекторный характер.Иван Петрович Павлов (1849 - 1936) - великий ученый-материалист. Основные труды его посвящены физиологии кровообращения, пищеварения и больших полушарий головного мозга. Исследования И. П. Павлова в области физиологии кровообращения привели к созданию учения о регуляции деятельности сердечно-сосудистой системы. И. П. Павлов установил, что деятельность различных органов пищеварительной системы регулируется нервной системой и зависит от различных явлений внешней среды.В трудах И. П. Павлова нашла блестящее подтверждение высказанная И. М. Сеченовым мысль о рефлекторном характере деятельности органов. Различные раздражения из внешней среды, которые оказывают действие на организм, воспринимаются посредством нервной системы и вызывают изменение деятельности тех или иных органов. Такие ответные реакции организма на раздражение, осуществляемые через нервную систему, носят название рефлексов.Особое значение имеют исследования И. П. Павлова, посвященные изучению функций коры головного мозга. Этими исследованиями было показано , что в основе психической деятельности человека лежат физиологические процессы, протекающие в коре головного мозга.
2. Характеристика основных физиологических свойств возбудимых тканей. Понятие об ионной ассиметрии.

Нервная ткань обладает возбудимостью. Функции возбудимой ткани базируются на 2 основных свойствах: 1-несимметричного расположения потенциалобразующих ионов по отношению к мембране;2- избирательная проницаемость клеточной мембраны. Ионная асимметрия: основными потенциалобразующими ионами яв-ся К и Na. В некоторых тканях таковыми являются Са и CL. Na больше вне клетки, а К- в клетке. Данные ионы стремятся перемещаться через мембрану.Na стремится войти в клетку вдоль конц.градиента, а К выйти вдоль конц.градиента. конц.градиент для Na и Kсохраняют свое направление всегда, и в состоянии покоя, и в состоянии раздражения. 2 .избират.проницаемость мембраны: мембрана возбудимых тканей образована 2 слоем фосфолипидов, пронизанными ионными каналами. Ионные каналы- интегральные белки мембраны, в ряде случаев обладающие воротным механизмом- канал может быть открытым и закрытым. Р группа обращена к воде, гидрофильна. Жирные кислоты липофильны и обращены друг к другу. Проницаемость Na-канала зависит от функц-го состояния возбудимой ткани:1-покой- каналы закрыты; 2- при действии раздражителя канал на короткое время открывается. К-каналы всегда открыты в независимости от функц-го состояния возбудимой ткани. Время от времени мембрану пронизывают другие белки- натрий-калиевые насосы. У этих белков имеется 3 центра связывания: для натрия, калия, и АТФ.
3. Понятие о потенциале покоя. Ионный механизм происхождения потенциала покоя. Понятие об ионных насосах.

Потенциал покоя- это потенциал мембраны, регистрируемой в клетке. В покое наружная поверхность мембраны более электроположительна чем внутри. В покое натриевые каналы закрыты, калиевые- открыты. К выходит через свой канал вдоль конц.градиента. К чему приводит выход К из клетки? К поляризации мембраны. Наружная поверхность становится более электроположительной, чем внутренняя. К будет выходить из клетки до тех пор, пока созданный им потенциал мембраны не станет столь значительным, что прекратит перемещение К из клетки. Это возникает при заряде мембраны= -97мВ . В состоянии электрического покоя клетка может пребывать сколько угодно, если ее не раздражать. Поскольку в покое имеется небольшая утечка Na в клетку(не по своим каналам), реальный потенциал, регистрируемый в покое менше -97. Ем=-97 наз-ся равновесным калиевым потенциалом. Если потенциал покоя регистрируется в мышечной клетке, то они расслаблены, если ПП регистрируется в нервной клетке, то по ним в это время не распространяется возбуждение. Если это зрительный нерв - регистрируется ПП. Время от времени мембрану пронизывают белки- натрий-калиевые насосы. У этих белков имеется 3 центра связывания: для натрия, калия, и АТФ.натрий-калиевого насос-(Na+/K+-нaсос) - транспортный процесс, который выкачивает ионы натрия через мембрану клетки наружу и в то же время закачивает в клетку ионы калия. Этот насос отвечает за поддержание различной концентрации ионов натрия и калия по обе стороны мембраны , а также за наличие отрицательного электрического потенциала внутри клеток. (+рисунок).
4. Ионный механизм возникновения потенциала действия. Графическое изображение потенциала действия. Характеристика фаз ПД.

Потенциал действия- кратковременный переворот заряда мембраны, вызванный действием раздражителя. Возбудимая ткань подверглась раздражению. Открылись Na-каналы, Na начал входить в клетку вдоль 2 сил: вдоль конц.граиента и вдоль заряда мембраны. Вход Naв клетку приводит к снижению заряда мембраны, уменьшается потенциал покоя с -97 до 0мВ, заряда мембраны нет, ПП исчез. Мембрана полностью деполяризована(уменьшение ПП). Мембрана вновь получила заряд, но инвертированный(переворот). Данный заряд мембраны не является устойчивым, поскольку проницаемость мембраны сейчас оптимальна. Na входит в клетку до тех пор, пока потенциал мембраны, созданный им, не становится столь значительным, что катион перестает входить в клетку. Вход натрия прекратился. Почему? Потому что сила, способствующая входу Na(диффузия), равна силе, противодействующей входу натрия- это чисто электрическая сила(Ем=55мВ). Последствия переворота заряда мембраны:1.заряд мембраны=+55мВ и называется натриевым равновесным потенциалом. Однако, реальный заряд имеет меньшее значение и равны+30мВ, т.к. вход Nа в клетку создала условия для выхода К из клетки. К выходит вдоль 2 сил: конц.градиента и вдоль заряда мембраны. Выход К из клетки приводит к приобретению мембраной исходного заряда. По завершению инверсии заряда мембраны, Na каналы закрываются. К будет выходить из клетки до тех пор, пока созданный им потенциал не станет столь значительным, что прекратит выход К из клетки. Процесс возвращения мембраны исходного заряда- процесс реполяризации. По возвращении клетке исходного заряда изменилась величина конц.градиента для натрия и калия. Для того чтобы ее восстановить включаются КNa –насос, который с использованием энергии АТФ, выводит Na из клетки и возвращает К в клетку-энергозатратно. (+рисунок).
5. Понятие о критическом уровне деполяризации. Закон все или ничего.

Исследуется влияние(зависимость) силы раздражителя на свойства возбудимых тканей. Критический уровень деполяризации- уровень деполяризации мембраны, при котором возникает потенциал действия. Закон «все или ничего» гласит:

Придействии на ткань подпорогового раздражителя ПД не возникает(нет ответа). Возникает локальный потенциал(не имеющии последствий).

При действии на ткань порогового раздражителя возникает потенциал действия, единственно возможной максимальной амплитудой(все).

При действии сверхпорогового раздражителя в тканях возникает ПД такой же амплитуды, как и при действии порогового раздражителя.

Амплитуда ПД определяется 2 факторами:конц.градиентом и в зависимости от количества Na-ых каналов. Оба фактора для данной ткани являются постоянными величинами , амплитуда ПД также является величиной постоянной. Пороговый раздражитель(реобаза)- наименьшая сила раздражителя, способного вызвать ПД.

6. изменение возбудимости при раздражении. Понятие об абсолютной и относительной рефрактерности. Понятие о пороговом потенц.

Исследуется возбудимость и степень возбудимости тканей при различных функциональных состояниях. Возбудимая ткань возбудима, если она способна генерировать ПД при действии раздражителя(сила не имеет значения). Возбудимость может быть: повышенной(супернормальной), нормальной, пониженной(субнормальной). В это время ПД можно вызвать действием подпорогового раздражителя(для супернорм.), порогового(для нормально возбудимой), сверхпорогового(для субнорм). Критерием возбудимости является величина порогового потенциала. Пороговый потенциал- это потенциал, на который нужно уменьшить Ео(ПП) для достижения критического уровня деполяризации. Чем меньше пороговый потенциал, тем возбудимость выше.. возбудима ли возбудимая ткань в покое? Да.потому что генерирует ПД при действии раздражителя предъявленного в покое. Как возбудима? Проверяем- предъявляем ткани различные силы раздражителя. ПД возникает при действии порогового раздражителя. В состоянии покоя она нормально возбудима. Возбудима ли вто время, когда Ео уменьшается, но не достигло Екр.? Да.потому что есть раздражитель, способный предъявленный в это время, генерировать ПД. Степень возбудимости- повышенная(супернорм.). потому что ПД возникает при действии подпорогового раздражителя. Возбудима ли возбудимая ткань в то время, пока в ней генерируется пик ПД? Даем раздражитель. Абсолютно невозбудима- абсолютно рефрактерна. Потому что раздражитель, вызванный в это время, не может генерировать новый ПД. Возбудима ли возбудимая ткань когда завершается пик ПД? Только сильный раздражитель может вызвать ПД. Да, возбудима, потому что раздражитель, предъявленный в это время может вызвать ПД, но только сверхпороговой силы.Пороговый раздражитель(реобаза)- наименьшая сила раздражителя, способного вызвать ПД.Если мембрана деполяризуется сразу после развития потенциала действия, то возбуждение не возникает ни при значении потенциала, соответствующем порогу для предыдущего потенциала действия , ни при любой более сильной деполяризации. Такое состояние полной невозбудимости, которое в нервных клетках продолжается около 1 мс, называется абсолютным рефрактерным периодом. За ним следует относительный рефрактерный период, когда путем значительной деполяризации все же можно вызвать потенциал действия, хотя его амплитуда и снижена по сравнению с нормой.
7.закон силы времени. Понятие о реобазе,полезном времени и хронаксии

Закон силы-времени исследует зависимость ответа возбудимой ткани от изменения параметров раздражителя: силы раздражителя и времени действия этого раздражителя. Это закон исследовал лапик, Вейс. Возбудимой ткани предъявлялись раздражители различной силы и времени действия. Параметры тех раздражителей, которые вызывали ответ возб.тк., наносили точки на оси координат.затем

Эти точки соединяли и обрисовывалась гипербола. Следовательно, зависимость ответа возбудимой ткани от силы и времени действия раздражителя в алгебр.форме представлена гиперболой. Реобаза- наименьшая сила раздражителя, необходимая для возникновения ПД. Полезное время- наименьшее время, в течение которого на ткань действует раздражитель, сила которого равна 1 реобазе. Реобаза является клиническим критерием возбудимой ткани: чем больше реобаза, тем возбудимость ниже. В неврологической практике исследуют удвоенную реобазу как показатель возбудимости нервной и мышечной ткани и наименьшее время, в течение которого действует эта сила- хронаксию. Хронаксия является показателем лабильности возбудимой ткани. Лабильность- функциональная подвижность возбудимой ткани: способность мышц и нервов генерировать определенное максимальное количество ПД в единицу времени. Чем меньше хронаксия, тем больше лабильность.
8. Механизм проведения нервного импульса по бизмиелиновым и миелиновым нервным волокнам.

Миелин - это компактная спираль из плазматических мембран шванновских клеток или клеток олигодендроглии.шванновская клетка овивается вокруг осевого цилиндра при этом из шванновских клеток выделяется цитоплазма и остается лишь многослойная оболочка. Участки свободные от миелина называются перехватами Ранвье.миелинизация начинается с 4 мес.внутриутробного развития и завершается к 7-10 годам жизни ребенка. В тех местах нервого волокна, которые покрыты миелином отс-т какие либо ионные каналы, зато в перехватах Ранвье отмечается высокая плотность отдельных потенциалозависимыхИа и К- каналов. В состоянии покоя в области перехватов Ранвьемиелинизированные нервные волокна отс-т продольная разность потенциала. При действии раздажителя в перехватах ранвье, подверженного раздражению, возникает ПД. На поверхности нервного волокна возникает разность потенциалов. Амплитуда Пд в перехватах высока и=120мВ.это связано с высокой плотностью Иа-каналов в этих участках нервного волокна. Столь значительная инверсия заряда мембраны позволяет деполяризации распространиться на соседние перехваты, перепрыгивая через участки миелинизации. В перехватах ранвье располагаются потенциалозависимы ионные каналы. Эти каналы чувствительны к небольшой деполяризации мембраны. Небольшая деполяризация приводит к открытию Иа-каналов соседних перехватов ранвье. Выход Иа в клетки вызывает инверсию заряда мембраны этих перехватов ранвье. Распространение возбуждения в миелизированных нервных волокнах проходит: сальтоторно, перепрыгивая через участки миелина , и бездекрементно, не затухая, по той же причине, по которой не затухает в немиелизированных нервных волокнах. Преимущества миелинизации: 1. Высокая скорость проведения возбуждения- скорость120м/с, когда в немиелин 60. 2.экономия энергии АТФ- Иа К-насосы располагаются только в перехватах ранвье(там АТФ). 3. Миелинизация экономит пространство цнс. Скорость проведения возбуждения по нервному волокну прямопропорциональна диаметру нервного волокна.тм толще волокно, тем быстрее пробег по нерву. Следовательно, миелинизация экономила пространство.
9. Синапсы. Классификация синапсов. Строение химического синапса

Синапс-функц.контакт, образованный аксоном нервных клеток и аксоном инервируемых клеток или образований. Синаптический контакт происходит с пом. Хим.в-в, поэтому синапсы наз-ют химическими. В организме имеются также электрические синапсы, которым возбуждение передается в связи с тесным контактом структур(с наличием нексусов). Синаптическая щель заполнена базальной мембраной, пронизана порами. Структурами синапса являются: 1.синаптическое окончание, в котором располагаются везикулы, заполненные медиатором. 2. Пресинаптическая мембрана-мембранасинаптического окончания, располагающееся напротив иннервируемого образования. 3. Синаптическая щель, заполненная базальной мембраной, пронизанной порами. 4. Постсинаптическая мамбрана- фрагмент мембраны иннервируемого образования, расположенной напротив пресинаптической мембраны. Функцией синапса является передача электрического образования(ПД) на иннервируемую структуру. Классифицируется по типу медиатора: холинэргические(медиатор- холин), адренэргические(норадреналин), гамкэргические(ГАМК), дофаминэргические(дофамин). Так же классифицируется по типу иннервируемого образования: нейронейрональные, нервномышечные, аксовазальные и нейросекреторные. Они образованы аксонами нервных клеток и: нейронейр.- и нервн.кл.(бывают аксосомальные, аксодендритные и аксоаксональные), нейромыш.-и мышцы, аксоваз.- и гл.мышсосуд.стенки, нейросекрет.- и железист.кл.. также по направленности изменения исходного потенциала синапсы могут быть: возбудительные- инициируют возникновение ПД иннервируемой структуры; тормозные- вызывать торможение иннервируемой структуры.
10. Характеристика стадий синаптической передачи в химическом синапсе.

Любая синаптическая передача протекает в 5 стадий:

1.образование везикул и медиатора.

2. заполнение везикул медиатором.

3. высвобождение медиатора.

4. взаимодействие медиатора с постсинаптическими структурами

5. устранение медиатора с постсинаптической мембраны.

1стадия. Везикулы образуются в теле нервных клеток из цистерн в аппарате Гольджи. Они транспортируются к синаптическому окончанию аксонным транспортом. Медиатор ацетил-холин образуется из ацетата и холина под влиянием фермента холинацетилтрансфераза.

Медиатор может образоваться в теле и аксоне нейрона, но более всего в синаптическом окончании.

2ст. в каждой везикуле располагается порция медиатора- квант. Везикулы заполняются медиатором с пом насоса активно, расположенного в мембране везикул.

3ст. в пресинаптической мембране имеются активные зоны- в этих участках мембраны локализуются белки особой конформации. В близости от активных зон располагаются уч-ки мембраны, пронизанные потенциалозависимымиСа- каналами- ионные каналы мембраны, воротный механизм которого зависит от потенциала мембраны. При возбуждении нервн.тк. ПД распространяется по аксону, достигая синаптич.окончания. мембрана деполяризуется, Са-каналы открываются. Са поступает в синаптическое окончание из межклеточного пространства по конц.градиенту(по диффузии). В присутствии Са активируются фермент синаптического окончания кальмодулин, который снижает сродство везикул и актиноподобн.нитями. в мембране везикул имеются фрагменты сродственные белкам активных зон. Везикулы соединяются этими участками своих мембран с активными зонами в присутствии Са. Последствием взаимодействия белков являютсяизменениеконформации обеих мембран., приводящие к образованию общей поры. В эту пору медиатор диффундирует на постсинаптическую мембрану. После этого везикула подвергается рециклизации. Везикул отсоединяется от активных зон и вновь соединяется с актиноподобными нитями. Это связано с тем, что Са начинают покидать синаптическое окончание , их выводят в интерстицийСа-насос пресинаптической мембраны.

4ст. АХ взаимодействует с холинорецепторами постсинаптической мембраны. Их 2 типа: никотиновые мускориновые. 1. Взаимодействие Н-ахр. Постсинаптическая мембрана представлена 2 слое фосфолипидов, пронизанных общим хемозависимымИа-К каналами. Н-ахр- участок интегральногоо белка, формирующего общий ионный канал, обращенной к постсинаптической мембране. АХ взаимодействует с Н-ахр обратимо. Никотин влияет на проницаемость постсинаптической мембраны как и ах. Канал открывается, Та входит, К выходит, постсинаптическая мембрана деполяризуется, в ней вознивает локальный потенциал(ПКП). Когда ПКП достигает 20мВ деполяризуется соседние участки мембраны, в которых расположены отдельные Иа и К каналы. Иа каналы открываются, Иа входит, порогово деполяризуя мембрану, позникает ПД.

2.М-ахр- поверхностный белок постсинаптической мембраны, сродственный с ах. В сердце, в желудке, в кишечнике.АХ взаимодействовал с холинорецептором, конформация М-ахризменилась,актив-сь вторичные посредники. Последние попадают в цитоплазму и там активирует протеинкиназу. Она дефосфолирирует общий канал постсинаптической мембраны, фосфолирированиеизменяе его конф.и канал открывается, Квыходит,Иа входит, возникает ПД.

5ст. после того,ка Ах взаимодействовал с холинорецепторами, он подвергается разрушению гидролизом ферментом постсинаптической мембраны АХэстеразой. АХрасщеляется на ацетат ихолин. Холин захватывается и включается в синтез новых молекул медиатора.

Отличие адренэргической передачи: медиатор-норадренали из тирозин, имеется 4 типа ар:альфа1,альфа2,бета1, бета2. Бета 2 для адреналина. Медиатор устраняется разрушением ферентоммоноаминооксидазой используется для повторного использования, то есть вновь поступает в везикулы.