Хлоропласты содержатся в клетках. Хлоропласты, их строение, химический состав и функции. Что такое пигменты


Группируются в граны, которые представляют собой стопки сплюснутых и тесно прижатых друг к другу тилакоидов, имеющих форму дисков. Соединяются граны с помощью ламелл. Пространство между оболочкой хлоропласта и тилакоидами называется стромой . В строме содержатся хлоропластные молекулы РНК , пластидная ДНК, рибосомы , крахмальные зёрна, а также ферменты цикла Кальвина .

Происхождение

В настоящее время общепризнано происхождение хлоропластов путем симбиогенеза. Предполагают, что хлоропласты возникли из цианобактерий , так как являются двухмембранным органоидом, имеют собственную замкнутую кольцевую ДНК и РНК, полноценный аппарат синтеза белка (причем рибосомы прокариотического типа - 70S), размножаются бинарным делением , а мембраны тилакоидов похожи на мембраны прокариот (наличием кислых липидов) и напоминают соответствующие органеллы у цианобактерий. У глаукофитовых водорослей вместо типичных хлоропластов в клетках содержатся цианеллы - цианобактерии, потерявшие в результате эндосимбиоза способность к самостоятельному существованию, но отчасти сохранившие цианобактериальную клеточную стенку .

Давность этого события оценивают в 1 - 1,5 млрд лет .

Часть групп организмов получала хлоропласты в результате эндосимбиоза не с прокариотными клетками, а с другими эукариотами, уже имеющими хлоропласты . Этим объясняется наличие в оболочке хлоропластов некоторых организмов более чем двух мембран . Самая внутренняя из этих мембран трактуется как потерявшая клеточную стенку оболочка цианобактерии, внешняя - как стенка симбионтофорной вакуоли хозяина. Промежуточные мембраны - принадлежат вошедшему в симбиоз редуцированному эукариотному организму. У некоторых групп в перипластидном пространстве между второй и третьей мембраной располагается нуклеоморф, сильно редуцированное эукариотное ядро .

Модель хлоропласта

Строение

У различных групп организмов хлоропласты значительно различаются по размерам,строению и количеству в клетке. Особенности строения хлоропластов имеют большое таксономическое значение .

Оболочка хлоропластов

У различных групп организмов оболочка хлоропластов отличается по строению.

У глаукоцистофитовых, красных, зеленых водорослей и у высших растений оболочка состоит из двух мембран. У других эукариотных водорослей хлоропласт дополнительно окружен одной или двумя мембранами. У водорослей, обладающих четырехмембранными хлоропластами, наружная мембрана обычно переходит в наружную мембрану ядра.

Перипластидное пространство

Ламеллы и тилакоиды

Ламеллы соединяют полости тилакоидов

Пиреноиды

Пиреноиды - центры синтеза полисахаридов в хлоропластах . Строение пиреноидов разноообразно, и не всегда они морфологически выражены. Могут быть внутрипластидными и стебельчатыми, выступающими в цитоплазму. У зеленых водорослей и растений пиреноиды располагаются внутри хлоропласта, что связано с внутрипластидным запасанием крахмала.

Стигма

Стигмы или глазки встречается в хлоропластах подвижных клеток водорослей. Располагаются вблизи основания жгутика. Стигмы содержат каротиноиды и способны работать как фоторецепторы.

См. также

Примечания

Комментарии

Примечания

Литература

  • Белякова Г. А. Водоросли и грибы // Ботаника: в 4 т. / Белякова Г. А., Дьяков Ю. Т., Тарасов К. Л. - М .: Издательский центр «Академия», 2006. - Т. 1. - 320 с. - 3000 экз. - ISBN 5-7695-2731-5
  • Карпов С.А. Строение клетки протистов. - СПб. : ТЕССА, 2001. - 384 с. - 1000 экз. - ISBN 5-94086-010-9
  • Lee, R. E. Phycology, 4th edition. - Cambridge: Cambridge University Press, 2008. - 547 с. - ISBN 9780521682770

Wikimedia Foundation . 2010 .

Смотреть что такое "Хлоропласты" в других словарях:

    - (от греч. chloros зелёный и plastos вылепленный), внутриклеточные органоиды (пластиды) растений, в к рых осуществляется фотосинтез; благодаря хлорофиллу окрашены в зелёный цвет. Встречаются в клетках разл. тканей надземных органов растений,… … Биологический энциклопедический словарь

    - (от греч. chloros зеленый и plastos вылепленный образованный), внутриклеточные органоиды растительной клетки, в которых осуществляется фотосинтез; окрашены в зеленый цвет (в них присутствует хлорофилл). Собственный генетический аппарат и… … Большой Энциклопедический словарь

    Тела, заключающиеся в клетках растений, окрашенные взеленый цвет и содержащие хлорофилл. У высших растении Х. имеют весьмаопределенную форму и называются хлорофилльными зернами; у водорослейформа их разнообразна и они называются хроматофорами или … Энциклопедия Брокгауза и Ефрона

    Хлоропласты - (от греческого chloros зелёный и plastos вылепленный, образованный), внутриклеточные структуры растительной клетки, в которых осуществляется фотосинтез. Содержат пигмент хлорофилл, окрашивающий их в зелёный цвет. В клетке высших растений от 10 до … Иллюстрированный энциклопедический словарь

    - (гр. chloros зеленый + lastes образующий) зеленые пластиды растительной клетки, содержащие хлорофилл, каротин, ксантофилл и участвующие в процессе фотосинтеза ср. хромопласты). Новый словарь иностранных слов. by EdwART, 2009. хлоропласты [гр.… … Словарь иностранных слов русского языка

    - (от греч. chlorós зелёный и plastós вылепленный, образованный) внутриклеточные органеллы растительной клетки Пластиды, в которых осуществляется фотосинтез. Окрашены в зелёный цвет благодаря присутствию в них основного пигмента фотосинтеза … Большая советская энциклопедия

    Ов; мн. (ед. хлоропласт, а; м.). [от греч. chlōros бледно зелёный и plastos вылепленный] Ботан. Тельца в протоплазме растительных клеток, содержащие хлорофилл и участвующие в процессе фотосинтеза. Концентрация хлорофилла в хлоропластах. * * *… … Энциклопедический словарь

    Тела, заключающиеся в клетках растений, окрашенные в зеленый цвет и содержащие хлорофилл. У высших растений X. имеют весьма определенную форму и называются хлорофилльными зернами (см.); у водорослей форма их разнообразна и они называются… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Мн. Зеленые пластиды растительной клетки, содержащие хлорофилл, каротин и участвующие в процессе фотосинтеза. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

    - (от греч. chloros зелёный и plastоs вылепленный, образованный), внутриклеточные органоиды растит. клетки, в к рых осуществляется фотосинтез; окрашены в зелёный цвет (в них присутствует хлорофилл). Собств. генетич. аппарат и белоксинтезирующая… … Естествознание. Энциклопедический словарь

Его оболочка состоит из двух мембран - внешней и внутренней, между которыми находится межмембранное пространство. Внутри хлоропласта, путем отшнуровывания от внутренней мембраны, образуется сложная тилакоидная структура. Гелеобразное содержимое хлоропласта называется стромой.

Каждый тилакоид отделен от стромы одинарной мембраной. Внутреннее пространство тилакоида называется люмен. Тилакоиды в хлоропласте объединяются в стопки - граны . Количество гран различно. Между собой они связаны особыми удлиненными тилакоидами - ламеллами . Обычный же тилакоид похож на округлый диск.

В строме содержатся собственное ДНК хлоропластов в виде кольцевой молекулы, РНК и рибосомы прокариотического типа. Таким образом, это полуавтономный органоид, способный самостоятельно синтезировать часть своих белков. Считается, что в процессе эволюции хлоропласты произошли от цианобактерий, начавших жить внутри другой клетки.

Строение хлоропласта обусловлено выполняемой функцией фотосинтеза . Связанные с ним реакции происходят в строме и на мембранах тилакоидов. В строме - реакции темновой фазы фотосинтеза , на мембранах - световой . Поэтому они содержат различные ферментативные системы. В строме содержатся растворимые ферменты, участвующие в цикле Кальвина.

В мембранах тилакоидов содержатся пигменты хлорофиллы и каратиноиды. Все они участвуют в улавливании солнечного излучения. Однако ловят разные спектры. Преобладание того или иного типа хлорофилла в определенной группе растений обуславливает их оттенок - от зеленого до бурого и красного (у ряда водорослей). Большинство растений содержат хлорофилл а .

В строении молекулы хлорофилла выделяют головку и хвост. Углеводный хвост погружен в мембрану тилакоида, а головка обращена к строме и находится в ней. Энергия солнечного света поглощается головкой, приводит к возбуждению электрона, который подхватывается переносчиками. Запускается цепь окислительно-восстановительных реакций, приводящих в конце концов к синтезу молекулы глюкозы. Таким образом энергия светового излучения превращается в энергию химических связей органических соединений.

Синтезируемые органические вещества могут накапливаться в хлоропластах в виде крахмальных зерен, а также выводится из него через оболочку. Также в строме присутствуют жировые капли. Однако они образуются из липидов разрушенных мембран тилакоидов.

В клетках осенних листьев хлоропласты утрачивают свое типичное строение, превращаясь в хромопласты, у которых внутренняя мембранная система проще. Кроме того происходит разрушение хлорофилла, отчего становятся заметными каротиноиды, придающие листве желто-красные оттенки.

В зеленых клетках большинства растений обычно содержится много хлоропластов по форме похожих на немного вытянутый в одном направлении шар (объемный эллипс). Однако у ряда водорослей в клетке может содержаться один огромный хлоропласт причудливой формы: в виде ленты, звездчатый и др.

Пластиды. Это органеллы, характерные исключительно для растительных клеток. В них происходит первичный и вторичный синтез углеводов. Форма, размеры, строение и функции пластид различны. По окраске (наличию или отсутствию пигментов) различают три типа пластид: зеленые хлоропласты, желто-оранжевые и красные хромопласты, бесцветные лейкопласты. Возможно взаимное превращение пластид. Обычно в клетке встречается только один тип пластид. Пластиды развиваются из пропластид -- сферических недифференцированных телец, которые содержатся в растущих частях растений (в клетках зародыша, образовательной ткани). Они окружены двойной мембраной и заполнены матриксом. В матриксе имеются кольцевая ДНК и рибосомы прокариотического типа. Пропластиды способны делиться. Из них на свету (в листьях, незрелых плодах, наружных частях стебля) формируются хлоропласты, в глубине стебля и в подземных органах -- бесцветные лейкопласты. Из хлоропластов и иногда лейкопластов образуются хромопласты.

Xлоропласты -- это органеллы фотосинтеза. Хлоропласты высших растений имеют примерно одинаковую форму двояковыпуклой линзы. Размеры хлоропластов 5... 10 мкм в длину при диаметре 2...4 мкм. Число хлоропластов в клетках высших растений 15...50. Хлоропласты водорослей, называемые хроматофорами, значительно разнообразнее по форме, структуре, набору пигментов. В клетках высших растений хлоропласты расположены в постенном слое цитоплазмы таким образом, что одна из плоских сторон обращена к освещенной стенке клетки. Положение хлоропластов меняется в зависимости от освещенности: при прямом солнечном свете они отходят к боковым стенкам. Хлоропласт содержит воды до 75 %, белки, липиды, нуклеиновые кислоты, ферменты и пигменты: хлорофиллы (5...10% сухой массы) и каротиноиды (1...2 %). Молекула хлорофилла состоит из головки -- сложного углеродно-азотного (тетрапирольного) кольца, в центре которого находится атом магния, и длинного хвоста -- цепи из двадцатиатомного спирта фитола. Головки молекул хлорофилла способны связываться с белками, а их фитольные хвосты растворимы в жирах. Существует несколько видов хлорофилла.В процессе фотосинтеза хлорофиллу принадлежит ведущая роль. Он может поглощать солнечную энергию, запасать ее или передавать другим молекулам.

Каротиноиды представляют собой высокомолекулярные углеводороды: оранжевый каротин и желтый ксантофилл. Каротиноиды хлоропластов, а также синие, красные, бурые пигменты хроматофоров водорослей называют дополнительными, вспомогательными пигментами, поскольку энергия, поглощенная ими, может передаваться на хлорофилл. Хлорофилл использует энергию красной части спектра, каротиноиды -- синей. Максимум поглощения красного и синего пигментов водорослей приходится на зеленую и желтую части спектра. Фотосинтез -- сложный многостадийный процесс; естественно, что для его осуществления необходима дифференцированная структура, которая и выработалась в процессе эволюции. В онтогенезе хлоропласты формируются из пропластид путем образования из впячиваний внутренней мембраны уплощенных мешков -- тилакоидов. Тилакоидная система состоит из гран -- пачек дисковидных тилакоидов (наподобие стопки монет) и тилакоидов стромы -- уплощенных канальцев, которые объединяют граны между собой. В тилакоидах гран локализованы хлорофиллы и каротиноиды. Тилакоиды гран не изолированные единицы, они связаны друг с другом таким образом, что их полости оказываются непрерывными. В строме хлоропластов содержится собственная белоксинтезирующая система: кольцевая ДНК и прокариотические рибосомы. Большинство белков мембран тилакоидов (в частности, ферменты, осуществляющие световые реакции) синтезируется на рибосомах хлоропластов, тогда как белок стромы и липиды мембран имеют внепластидное происхождение. Световая фаза фотосинтеза проходит на мембранах тилакоидов гран. Квантовая энергия света превращается в химическую энергию макроэргических связей АТФ, НАДФ * Н2; происходит фотолиз воды -- расщепление на водород (переносится на НАДФ) и кислород, который освобождается: свет Н 2 0 + НАДФ + АДФ + Фн НАДФ * Н 2 + АТФ + 1/2 О 2 . Темновая фаза проходит в строме, где за счет энергии, накопленной в световой фазе в молекулах АТФ и НАДФ Н2, происходит восстановление СО 2 до глюкозы, а затем и ассимиляционного крахмала. В ходе фотосинтеза образуются также жиры, жирные и органические кислоты, аминокислоты.Пластиды. Эти органеллы, характерные только для растений, встречаются во всех живых растительных клетках. Совокупность всех пластид (греч.пластос -- оформленный) клетки носит название п л а с т и д о м а. В зависимости от окраски, связанной с функциями, различают три основных типа пластид: хлоропласты (пластиды зеленого цвета), хромопласты (пластиды желтого, оранжевого или красного цвета) и лейкопласты (бесцветные пластиды). Обычно в клетке встречаются пластиды только одного типа. Хлоропласты (греч. хлорос -- зеленый) -- это наиболее изученные и имеющие наибольшее значение пластиды. Они содержат зеленый пигмент хлорофилл, который существует в хлоропластах в нескольких формах. Кроме хлорофилла, в хлоропластах содержатся пигменты, относящиеся к группе каротиноидов (липоиды), в частности желтый -- ксантофилл и оранжевый -- каротин, но обычно они маскируются хлорофиллом. Хлоропласты встречаются почти во всех клетках надземных органов растений, куда проникает свет, но особенно сильно развиты они в листьях и незрелых плодах, где составляют основной объем протопласта клеток. Лишь немногие типы клеток освещенных частей растений (некоторые выделительные, половые и проводящие органические вещества клетки) в зрелом --состоянии вместо хлоропластов содержат лейкопласты или хромопласты. Нет, как правило, хлоропластов и в клетках корней. Форма хлоропластов обычно правильная, линзовидная, довольно постоянная. Однако в некоторых типах клеток хлоропласты имеют более сложную форму, оболочка их может в отдельных местах глубоко вдаваться в тело пластиды, в результате чего возникают значительные углубления, часто неправильной формы, в которых находятся гиалоплазма с рибосомами и элементами ретикулума, иногда митохондрия. Размер и число хлоропластов на клетку колеблются в зависимости от рода растения и типа клетки. Чаще всего их диаметр составляет 4--7 мкм, толщина 1--3 мкм. Число хлоропластов варьирует сильнее.

Общая численность хлоропластов в растении громадна. Например, во взрослом дереве их насчитываются сотни миллиардов.На величину и форму хлоропластов влияют внешние условия: у растений, растущих в затененных местах, хлоропласты в общем крупнее, чем у растений открытых пространств, и, как правило, богаче хлорофиллом. Поскольку хлоропласты сравнительно крупные органеллы (значительно крупнее митохондрий, а иногда д аже и ядра) и окрашены, их легко можно изучать в прижизненном состоянии в клетке под световым микроскопом. Значительно разнообразнее хлоропласты у водорослей. Здесь они могут иметь пластинчатую (мужоция), звездчатую (зигнема), лентовидную (спирогира) форму и форму ребристых цилиндров. Такие хлоропласты обычно очень крупные, численность их в клетке небольшая (от одного до нескольких). Хлоропласты водорослей называют т акже хроматофорами (греч. хромео -- крашу; форос -- несущий). Однако и у водорослей могут встречаться хлоропласты обычной линзовидной формы, в этом случае численность их в клетке обычно велика. В клетках высших растений хлоропласты расположены в постенной цитоплазме таким образом, что одной широкой стороной обращены к клеточной оболочке, причем особенно много их около межклетников, заполненных воздухом. Однако положение пластид в клетке может меняться в зависимости от внешних условий, и прежде всего от освещенности. Они располагаются в клетке так, что улавливают свет наилучшим образом и вместе с тем не подвергаются действию прямых солнечных лучей. На рассеянном свету они сосредоточиваются часто у тех стенок оболочки клетки, которые обращены к поверхности органа, на ярком же свету они перемещаются на боковые стенки или поворачиваются к лучам узкой стороной (ребром). Строение хлоропластов довольно сложно, но во многом сходно у разных растений. Как и митохондрии, они имеют двумембранную оболочку, изолирующую от гиалоплазмы основное вещество пластиды -- строму (греч. строма -- ложе). Мембраны оболочки агранулярные (лишены рибосом). Наиболее характерная черта хлоропластов-- сильное развитие внутренних мембранных поверхностей в виде строго упорядоченной системы внутренних мембран, улавливающих свет. В них сосредоточен хлорофилл. Внутренние мембраны имеют форму плоских мешков, называемых тилакоидами (греч. тилакоидес -- мешковидный) или ламеллами. На срезах границы тилакоидов выявляются в виде двух темных линий. У высших растений, как правило, часть тилакоидов имеет дисковидную форму небольшого (около 0,5 мкм) диаметра и собрана наподобие стопки в группы, называемые гранами (греч. гранум -- зерно). В гране тилакоиды располагаются параллельно друг другу, контактируя мембранами. Число тилакоидов в гране колеблется в широких пределах в зависимости от вида растения и условий освещенности. Так, у некоторых высших растений их может быть всего 2--3, у других достигать нескольких десятков. Граны связаны между собой тилакоидами стромы, проходящими через них насквозь вдоль пластиды. В отличие от тилакоидов гран тилакоиды стромы часто не строго параллельны, удалены друг от друга на разное расстояние, имеют различный диаметр. В некоторых участках хлоропластов можно наблюдать складки внутренней мембраны пластидной оболочки, непосредственно переходящие в тилакоиды стромы. В отличие от митохондрий такие складки встречаются обычно редко. Однако в некоторых случаях эти выросты образуют сеть трубочек по периферии пластиды, называемую периферическим ретикулумом. У хлоропластов многих водорослей и в немногих типах зеленых клеток высших растений типичные граны не образуются. Основная функция хлоропластов -- фотосинтез (ассимиляция углекислого газа воздуха), образование органических веществ из неорганических за счет энергии света. Фотосинтез состоит из большого числа химических реакций, каждая из которых катализируется особым ферментом. Именно с этой функцией связана специфическая ультраструктура хлоропластов. В общем виде фотосинтез можно себе представить как процесс восстановления углекислого га за воздуха водородом воды с образованием органических веществ (в первую очередь глюкозы) и выделением в атмосферу кислорода. Центральная роль в этом процессе принадлежит хлорофиллу. Он поглощает энергию света и направляет ее на осуществление экзотермических реакций фотосинтеза. Эти реакции подразделяются на светозависимые и темновые (не требующие присутствия света). Светозависимые реакции состоят в преобразование световой энергии в химическую и разложении (фотолизе) воды. Они приурочены к мембранам тилакоидов. Темновые реакции -- восстановление углекислого газа воздуха водородом воды до углеводов (фиксация СОг) -- протекают в строме хлоропластов. Кроме того, в хлоропластах, как и в митохондриях, происходит синтез АТФ из АДФ. Однако, в отличие от митохондрий, источником энергии для этого процесса служит не энергия окисления органических веществ, а солнечный свет, поэтому его называют фотофосфорилированием. Хлоропласты способны также к синтезу и разрушению полисахаридов (к р ахмал а), некоторых липидов, аминокислот. Синтезируемые ими вещества не только выполняют функцию конституционных молекул, но могут откладываться в них про апас в виде крахмальных зерен, белковых и липидных включений. Наличие ДНК и рибосом указывает на существование своей собственной белоксинтезирующей системы в хлоропластах. И действительно, было показано, что большинство белков мембран тилакоидов (в частности, ферментов, осуществляющих световые реакции) синтезируется на рибосомах хлоропластов, тогда как основное число белков стромы и липиды мембран имеют внепластидное происхождение.

Пластиды - органоиды, специфичные для клеток растений (они имеются в клетках всех растений, за исключением большинства бактерий, грибов и некоторых водорослей).

В клетках высших растений находится обычно от 10 до 200 пластид размером 3-10мкм, чаще всего имеющих форму двояковыпуклой линзы. У водорослей зеленые пластиды, называемые хроматофорами, очень разнообразны по форме и величине. Они могут иметь звездчатую, лентовидную, сетчатую и другие формы.

Различают 3 вида пластид:

  • Бесцветные пластиды - лейкопласты ;
  • окрашенные - хлоропласты (зеленого цвета);
  • окрашенные - хромопласты (желтого, красного и других цветов).

Эти виды пластид до известной степени способны превращаться друг в друга - лейкопласты при накоплении хлорофилла переходят в хлоропласты, а последние при появлении красных, бурых и других пигментов - в хромопласты.

Строение и функции хлоропластов

Хлоропласты - зеленые пластиды, содержащие зеленый пигмент - хлорофилл.

Основная функция хлоропласт - фотосинтез.

В хлоропластах есть свои рибосомы, ДНК, РНК, включения жира, зерна крахмала. Снаружи хлоропласта покрыты двумя белково-липидными мембранами, а в их полужидкую строму (основное вещество) погружены мелкие тельца - граны и мембранные каналы.


Граны (размером около 1мкм) - пакеты круглых плоских мешочков (тилакоидов), сложенных подобно столбику монет. Располагаются они перпендикулярно поверхности хлоропласта. Тилакоиды соседних гран соединены между собой мембранными каналами, образуя единую систему. Число гран в хлоропластах различно. Например, в клетках шпината каждый хлоропласт содержит 40-60 гран.

Хлоропласты внутри клетки могут двигаться пассивно, увлекаемые током цитоплазмы, либо активно перемещаться с места на место.

  • Если свет очень интенсивен, они поворачиваются ребром к ярким лучам солнца и выстраиваются вдоль стенок, параллельных свету.
  • При слабом освещении, хлоропласты перемещаются на стенки клетки, обращенные к свету, и поворачиваются к нему своей большой поверхностью.
  • При средней освещенности они занимают среднее положение.

Этим достигаются наиболее благоприятные для процесса фотосинтеза условия освещения.

Хлорофилл

В гранах пластид растительной клетки содержится хлорофилл, упакованный с белковыми и фосфолипидными молекулами так, чтобы обеспечить способность улавливать световую энергию.

Молекула хлорофилла очень сходна с молекулой гемоглобина и отличается главным образом тем, что расположенный в центре молекулы гемоглобина атом железа заменен в хлорофилле на атом магния.


В природе встречается четыре типа хлорофилла: a, b, c, d.

Хлорофиллы a и b содержат высшие растения и зеленые водоросли, диатомовые водоросли содержат a и c, красные - a и d.

Лучше других изучены хлорофиллы a и b (их впервые разделил русский ученый М.С.Цвет в начале XXв.). Кроме них существуют четыре вида бактериохлорофиллов - зеленых пигментов пурпурных и зеленых бактерий: a, b, c, d.

Большинство фотосинтезирующих бактерий содержат бактериохлорофилл a, некоторые - бактериохлорофилл b, зеленые бактерии - c и d.

Хлорофилл обладает способностью очень эффективно поглощать солнечную энергию и передавать ее другим молекулам, что является его главной функцией. Благодаря этой способности хлорофилл - единственная структура на Земле, которая обеспечивает процесс фотосинтеза.

Главная функция хлорофилла в растениях - поглощение энергии света и передача ее другим клеткам.

Пластидам, так же, как и митохондриям, свойственна до некоторой степени автономность внутри клетки. Они размножаются путем деления.

Наряду с фотосинтезом, в пластидах происходит процесс биосинтеза белка. Благодаря содержанию ДНК пластиды играют определенную роль в передаче признаков по наследству (цитоплазматическая наследственность).

Строение и функции хромопластов

Хромопласты относятся к одному из трех видов пластид высших растений. Это небольших размеров, внутриклеточные органеллы.

Хромопласты имеют различный окрас: желтый, красный, коричневый. Они придают характерный цвет созревшим плодам, цветкам, осенней листве. Это необходимо для привлечения насекомых-опылителей и животных, которые питаются плодами и разносят семена на дальние расстояния.


Структура хромопласта похожа на другие пластиды. Их двух оболочек внутренняя развита слабо, иногда вовсе отсутствует. В ограниченном пространстве расположена белковая строма, ДНК и пигментные вещества (каротиноиды).

Каротиноиды – это жирорастворимые пигменты, которые накапливаются в виде кристаллов.

Форма хромопластов очень разнообразна: овальная, многоугольная, игольчатая, серповидная.

Роль хромопластов в жизни растительной клетки до конца не выяснена. Исследователи предполагают, что пигментные вещества играют важную роль в окислительно-восстановительных процессах, необходимы для размножения и физиологичного развития клетки.

Строение и функции лейкопластов

Лейкопласты - это органоиды клетки, в которых накапливаются питательные вещества. Органеллы имеют две оболочки: гладкую наружную и внутреннюю с несколькими выступами.

Лейкопласты на свету превращаются в хлоропласты (к примеру зеленые клубни картофеля), в обычном состоянии они бесцветны.

Форма лейкопластов шаровидная, правильная. Они находятся в запасающей ткани растений, которая заполняет мягкие части: сердцевину стебля, корня, луковиц, листьев.


Функции лейкопластов зависят от их вида (в зависимости от накапливаемого питательного вещества).

Разновидности лейкопластов:

  1. Амилопласты накапливают крахмал, встречаются во всех растениях, так как углеводы основной продукт питания растительной клетки. Некоторые лейкопласты полностью наполнены крахмалом, их называют крахмальными зернами.
  2. Элайопласты продуцируют и запасают жиры.
  3. Протеинопласты содержат белковые вещества.

Лейкопласты также служат ферментной субстанцией. Под действием ферментов быстрее протекают химические реакции. А в неблагоприятный жизненный период, когда процессы фотосинтеза не осуществляются, они расщепляют полисахариды до простых углеводов, которые необходимы растениям для выживания.

В лейкопластах не может происходить фотосинтез, потому что они не содержат гран и пигментов.

Луковицы растений, в которых содержится много лейкопластов, могут переносить длительные периоды засухи, низкую температуру, жару. Это связано с большими запасами воды и питательных веществ в органеллах.

Предшественниками всех пластид является пропластиды, небольшие органоиды. Допускают, что лейко — и хлоропласты способны трансформироваться в другие виды. В конечном итоге после выполнения своих функций хлоропласты и лейкопласты становятся хромопластами — это последняя стадия развития пластид.

Важно знать! Одновременно в клетке растения может находиться только один вид пластид.

Сводная таблица строения и функций пластид

Свойства Хлоропласты Хромопласты Лейкопласты
Строение Двухмембранная органелла, с гранами и мембранными канальцами Органелла с не развитой внутренней мембранной системой Мелкие органеллы, находятся в частях растения, скрытых от света
Окрас Зеленые Разноцветные Бесцветные
Пигмент Хлорофилл Каротиноид Отсутствует
Форма Округлая Многоугольная Шаровидная
Функции Фотосинтез Привлечение потенциальных распространителей растений Запас питательных веществ
Заменимость Переходят в хромопласты Не изменяются, это последняя стадия развития пластид Превращаются в хлоропласты и хромопласты


Весь процесс фотосинтеза протекает в зеленых пластидах - хлоропластах. Различают три вида пластид: лейкопласты - бесцветные, хромопласты - оранжевые, хлоропласты - зеленые. Именно в хлоропластах сосредоточен зеленый пигмент хлорофилл. Незеленые растения, например грибы, лишены пластид. Эти растения не обладают способностью к фотосинтезу. В процессе эволюции дифференциация пластид произошла очень рано. Правда, у фотосинтезирующих бактерий и сине-зеленых водорослей пластид еще нет, их роль выполняет окрашенная часть протоплазмы, прилегающая к оболочке. Это наиболее примитивная организация фотосинтетического аппарата. Однако уже у водорослей имеются специальные образования (хроматофоры), в которых сосредоточены пигменты, они разнообразны по форме (спиральные, ленточные, в виде пластинок или звезд). Высшие растения характеризуются вполне сформировавшимся типом пластид в форме диска или двояковыпуклой линзы. Приняв форму диска, хлоропласты становятся универсальным аппаратом фотосинтеза.

Химический состав хлоропластов достаточно сложен и характеризуется высоким (75 %) содержанием воды. Около 75-80 % общего количества сухих веществ приходится на долю различных органических соединений, 20-25 % - на долю минеральных веществ. Структурной основой хлоропластов являются белки, содержание которых достигает 50-55 % сухой массы, примерно половина из них водорастворимые. Такое высокое содержание белков объясняется их многообразными функциями в составе хлоропластов. Это структурные белки, являющиеся основой мембран, белки-ферменты, транспортные белки, поддерживающие определенный ионный состав, отличающийся от цитозоля, сократительные белки, подобные актомиозину мышц, которые обеспечивают двигательную активность хлоропластов. Белки выполняют также рецепторную функцию, принимая участие в регуляции интенсивности фотосинтеза в меняющихся условиях внутренней и внешней среды.

Важнейшей составной частью хлоропластов являются липиды, содержание которых колеблется от 30 до 40 % сухой массы. Липиды хлоропластов представлены тремя группами соединений.

Углеводы не являются конституционными веществами хлоропласта. В очень небольших количествах фосфорные эфиры сахаров участвуют в восстановительном цикле углерода, в основном же это продукты фотосинтеза. Поэтому содержание углеводов в хлоропластах колеблется значительно (от 5 до 50 %). В активно функционирующих хлоропластах углеводы обычно не накапливаются, происходит их быстрый отток. При уменьшении потребности в продуктах фотосинтеза в хлоропластах образуются крупные крахмальные зерна. В этом случае содержание крахмала может возрасти до 50 % сухой массы и активность хлоропластов снизится.

В хлоропластах высокое содержание минеральных веществ. Сами хлоропласты составляют 25-30 % массы листа, но в них сосредоточено до 80 % железа, 70-72 % - магния и цинка, около 50 % - меди, 60 % кальция, содержащихся в тканях листа. Эти данные хорошо согласуются с высокой и разнообразной ферментативной активностью хлоропластов. Минеральные элементы выступают в роли простетических групп и кофакторов деятельности ферментов. Магний входит в состав хлорофилла. Важная роль кальция заключается в стабилизации мембранных структур хлоропластов.

Строение хлоропласта, наблюдаемое с помощью электронного микроскопа, весьма сложное. Подобно ядру и митохондриям хлоропласт окружен оболочкой, состоящей из двух липопротеидных мембран. Внутреннюю среду представляет относительно однородная субстанция - матрикс, или строма, которую пронизывают мембраны - ламеллы . Ламеллы, соединенные друг с другом, образуют пузырьки - тилакоиды. Плотно прилегая друг к другу, тилакоиды образуют граны, которые различают даже под световым микроскопом. В свою очередь, граны в одном или нескольких местах объединены друг с другом с помощью межгранных тяжей - тилакоидов стромы. Пигменты хлоропласта, участвующие в улавливании световой энергии, а также ферменты, необходимые для световой фазы фотосинтеза, вмонтированы в мембраны тилакоидов.

Рис.1. Строение хлоропласта

1 - внешняя мембрана; 2 - внутренняя мембрана; 3 - крахмальное зерно; 4 - ДНК; 5 - тилакоиды стромы (фреты); 6 - тилакоид граны; 7 - матрикс (строма)

Строение зрелых хлоропластов одинаково у всех высших растений, как и в клетках разных органов одного растения (листьях, зеленеющих корнях, коре, плодах). В зависимости от функциональной нагрузки клеток, физиологического состояния хлоропластов, их возраста различают степень их внутренней структурированности: размеры, количество гран, связь между ними. Так, в замыкающих клетках устьиц основная функция хлоропластов - фоторегуляция устьичных движений. Этот процесс обеспечивается энергией высокоструктурированными митохондриями. Хлоропласты содержат крупные крахмальные зерна, набухшие тилакоиды, липофильные глобулы, что свидетельствует об их низкой энергетической нагрузке.

С возрастом строение хлоропластов существенно меняется. Молодые хлоропласты характеризуются ламеллярной структурой, в таком состоянии хлоропласты способны размножаться делением. В зрелых хлоропластах хорошо выражена система гран. В стареющих хлоропластах происходит разрыв тилакоидов стромы, связь между гранами уменьшается, в дальнейшем наблюдаются распад хлорофилла и деструкция гран. В осенней листве деградация хлоропластов приводит к образованию хромопластов, в которых каротиноиды сосредоточены в пластоглобулах.

Физиологические особенности хлоропластов

Важным свойством хлоропластов является их способность к движению. Хлоропласты передвигаются не только вместе с цитоплазмой, но способны и самопроизвольно изменять свое положение в клетке. Скорость движения хлоролластов составляет около 0,12 мкм/с. Хлоропласты могут быть распределены в клетке равномерно, однако чаще они скапливаются около ядра и вблизи клеточных стенок. Большое значение для расположения хлоропластов в клетке имеют направление и интенсивность освещения. При малой интенсивности освещения Хлоропласты становятся перпендикулярно к падающим лучам, что является приспособлением к лучшему их улавливанию. При высокой освещенности хлоропласты передвигаются к боковым стенкам и поворачиваются ребром к падающим лучам. В зависимости от освещения может также меняться и форма хлоропластов. При более высокой интенсивности света их форма становится ближе к сферической.

Основная функция хлоропластов - это процесс фотосинтеза. В 1955 г. Д. Арнон показал, что в изолированных хлоронпластах может быть осуществлен весь процесс фотосинтеза. Важно отметить, что хлоропласты имеются не только в клетках листа. Они встречаются в клетках не специализирующихся на фотосинтезе органов: в стеблях, колосковых чешуйках и остях колосьев, корнеплодах, клубнях картофеля и т. д. В ряде случаев зеленые пластиды обнаруживаются в тканях, расположенных не в наружных, освещенных частях растений, а в слоях, удаленных от света, в тканях центрального цилиндра стебля, в средней части луковицы лилейных, а также в клетках зародыша семени многих покрытосеменных растений. Последнее явление (хлорофиллоносность зародыша) привлекает внимание систематиков растений. Имеются предложения разделить все покрытосеменные растения на две большие группы: хлороомбриофиты и лейкоэмбриофиты, т. е. содержащие и не содержащие хлоропласты в зародыше (Яковлев). Исследования показали, что структура хлоропластов, расположенных в других органах растения, так же как и состав пигментов, сходны с хлоропластами листа. Это дает основания считать, что они способны к фотосинтезу.

В том случае, если они подвергаются освещению, по-видимому, в них действительно происходит фотосинтез. Так, фотосинтез хлоропластов, расположенных в остях колоса, может составлять около 30% от общего фотосинтеза растения. Позеленевшие на свету корни способны к фотосинтезу. В хлоропластах, находящихся, в кожуре плода до определенного этапа его развития, также может идти фотосинтез. Согласно предположению А. Л. Курсанова, хлоропласты, расположенные вблизи проводящих путей, выделяя кислород, способствуют повышению интенсивности обмена веществ ситовидных трубок. Вместе с тем роль хлоропластов не ограничивается их способностью к фотосинтезу. В определенных случаях они могут служить источником питательных веществ (Е. Р. Гюббенет). Хлоропласты содержат большее количество витаминов, ферментов и даже фитогормонов (в частности, гиббереллина). В условиях, при которых ассимиляция исключена, зеленые пластиды могут играть активную роль в процессах обмена веществ.